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Abstract: This paper is a review of the remarkable progress that has been made during the
past few decades in design, modeling, and fabrication of micromachined resonators. Although
micro-resonators have come a long way since their early days of development, they are yet to fulfill
the rightful vision of their pervasive use across a wide variety of applications. This is partially due to
the complexities associated with the physics that limit their performance, the intricacies involved in
the processes that are used in their manufacturing, and the trade-offs in using different transduction
mechanisms for their implementation. This work is intended to offer a brief introduction to all such
details with references to the most influential contributions in the field for those interested in a deeper
understanding of the material.
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1. Introduction

Microelectromechanical systems (MEMS) are a disruptive technology, much like lasers or
integrated circuits. As such, MEMS have an overarching applicability and impact in several sectors
such as telecommunications, consumer electronics, transportation, building automation and healthcare.
The MEMS market is expected to sustain continued growth made possible by many technological
revolutions fueled by, among others, the Internet of Things and wearable electronics, and it is
expanding at an increasing rate, projected to almost double from $11B in 2014 to $21B in 2020 with
MEMS resonator representing a growing market share [1].

The concept of MEMS resonators, mechanically resonating micro-structures that are electrically
brought into resonance, along with some of their advantages and applications were introduced in
their early form in the 1960s [2]. Today, amidst the widespread use of MEMS, MEMS resonators
are generating significant research and commercial interest, and are poised to capture a significant
portion of the MEMS market because of their numerous large volume and high impact applications.
These include sensing applications, where changes in a resonant element are used to monitor a given
quantity [3], timing applications, where a resonant element is used within an electronic system
to generate a high quality clock signal [4], or in filtering applications, where resonant structures
implement filters that can be of use in radiofrequency wireless transceivers [5]. MEMS resonators
are expected to become prevalent in these applications because they are well-suited to low-cost
batch fabrication, being manufactured with fabrication techniques similar to those widespread in
integrated circuit manufacturing. Moreover, unlike other resonant elements such as quartz crystals,
MEMS resonators have the potential for higher levels of integration with microelectronics at the
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die or package level [6]. These advantages can lead to reduced cost and form-factor systems that
can have enhanced performance and more functionality. However, before MEMS resonators can
completely replace other types of resonant elements, some challenges remain such as material
limitations, temperature stability, packaging or batch integration with electronics.

MEMS resonators have been the subject of several reviews that covered various aspects of the
field from the devices themselves to their various applications, e.g., [7–12]. This paper is aimed at
surveying a wide range of topics and prior work related to MEMS resonators in order to provide
readers with a better understanding of their operation and to give an overview of their evolution over
the last thirty years towards achieving their foreseen potential, among which their penetration of the
aforementioned applications. Specifically, the paper first details the operating principles of MEMS
resonators, covering modeling, properties, resonance modes, damping mechanisms and transduction
mechanisms. It then discusses techniques and challenges behind the manufacturing of MEMS
resonators, touching on materials and processes that have been used in their fabrication, including their
fabrication using complementary metal oxide semiconductor (CMOS) processes. Current and emerging
applications of MEMS resonators, namely their use in timing, sensing and radio-frequency systems
are then described. This includes an overview of the operating principles, performance metrics,
design considerations and latest developments in MEMS resonator-based oscillators, a key MEMS
resonator-based block suitable for sensing and timing applications. Where appropriate, the paper
surveys the latest research developments and directions pertaining to MEMS resonators and discusses
them. In addition, it provides information on the design and the use of MEMS resonators standalone
and within systems.

2. Basic Model and Properties

In a vibrating mechanical system, the kinetic and potential energies are continuously converted
to each other. Most systems exhibit a frequency dependent response where this transfer of energy
is optimum at certain frequencies (i.e., losses are minimum), known as the resonant frequencies of the
system. For low enough damping, the system response shows peaks at these particular frequencies.
Additionally, each resonant frequency corresponds to a particular pattern of motion for the components
of the mechanical system which is known as a mode shape. To exhibit resonance, a mechanical
system must possess the capacity to store both kinetic and potential energies. Therefore, the basic
resonator structure is a mass-spring system. In physical systems, additionally, there are always
energy loss mechanisms. A simple mode for mechanical losses is a damper. This combination of
mass-damper-spring system represents the simplest model for a resonator, as shown in Figure 1.
Using Newton’s laws of motion, the relationship between the displacements of the mass and input
force can be found from:

Me f f
∂2x
∂t2 + ζe f f

∂x
∂t

+ Ke f f x = Fin (1)

where Fin is the input force, Me f f is the effective mass of the system, Ke f f is the effective stiffness,
and ζe f f represents the effective total losses in the system. The system transfer function is given by

H(s) =
X(s)
Fin(s)

=
1

Me f f s2 + ζe f f s + Ke f f
=

1
Ke f f

(
ω2

0
s2 + ω0

Q s +ω2
0

)
(2)

where s is the complex frequency, ω0 is the undamped resonant frequency of the system
(i.e., natural frequency) and Q is the quality factor. For a second order system, the undamped resonant
frequency is:

ω0 = 2π f0 =

√
Ke f f

Me f f
(3)
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Figure 1. A mass-spring-damper system.

The quality factor is defined as:

Q = 2π
Average energy stored
Energy lost per cycle

(4)

Parametersω0 (or f0) and Q are the two significant performance metrics in the microresonator
domain. Due to their sizes, the resonant frequencies of microdevices are typically in kHz to MHz
range but can be in the GHz range for properly designed devices [13–15]. For a device that is intended
to be used as a microresonator, Q ranges from thousands to millions depending on the operating
conditions and device design [16–18]. Many applications benefit from maximizing both the resonant
frequency and quality factor of a resonator even though there is some trade-off between the two.
Consequently, their product, f0·Q, is a common figure of merit stated for resonators [19,20].

The relationship between the resonant frequency,ωr, and the undamped natural frequency,ω0,
of a second order system is [21]:

ωr = ω0

√
1− 1

2 Q2 (5)

It can be seen that, for large quality factors, as is the case for most micromachined resonators,
ωr ≈ ω0. By running a single frequency response measurement, one can estimate the resonant
frequency of a microresonator by locating the peak in the frequency response while the quality factor
(for Q� 1) can be estimated from:

Q =
f0

∆ f−3dB
=
ω0

2
d^H(ω)

dω
(6)

where ∆ f−3dB is the −3dB bandwidth around the resonant frequency. In addition to a narrower
bandwidth, high-Q systems exhibit a higher peak amplitude at resonance that is Q times the low
frequency response (see Figure 2).

Micromachines 2016, 7, 160 3 of 55 

 

(ݏ)ܪ = (ݏ)ܨ(ݏ)ܺ = ଶݏܯ1 + ζୣݏ + ܭ = ܭ1 ቌ ωଶݏଶ + ωܳ ݏ + ωଶቍ (2) 

where ݏ is the complex frequency, ω is the undamped resonant frequency of the system (i.e., 
natural frequency) and ܳ is the quality factor. For a second order system, the undamped resonant 
frequency is: 

ω = 2π ݂ = ඨܭܯ (3) 

The quality factor is defined as: ܳ = 2πAverage energy storedEnergy lost per cycle  (4) 

Parameters ω  (or ݂ ) and ܳ  are the two significant performance metrics in the 
microresonator domain. Due to their sizes, the resonant frequencies of microdevices are typically in 
kHz to MHz range but can be in the GHz range for properly designed devices [13–15]. For a device 
that is intended to be used as a microresonator, ܳ ranges from thousands to millions depending on 
the operating conditions and device design [16–18]. Many applications benefit from maximizing 
both the resonant frequency and quality factor of a resonator even though there is some trade-off 
between the two. Consequently, their product, ݂ ∙ ܳ, is a common figure of merit stated for 
resonators [19,20]. 

The relationship between the resonant frequency, ω, and the undamped natural frequency, ω, of a second order system is [21]: 

ω୰ = ωඨ1 − 12 ܳଶ (5) 

It can be seen that, for large quality factors, as is the case for most micromachined resonators, ω୰ ≈ ω. By running a single frequency response measurement, one can estimate the resonant 
frequency of a microresonator by locating the peak in the frequency response while the quality 
factor (for ܳ ≫ 1) can be estimated from: Q = ݂Δ݂ି ଷௗ = ω2 d∢H(ω)dω  (6) 

where Δ݂ି ଷௗ is the −3݀ܤ bandwidth around the resonant frequency. In addition to a narrower 
bandwidth, high-ܳ systems exhibit a higher peak amplitude at resonance that is ܳ times the low 
frequency response (see Figure 2). 

 
Figure 2. Time and frequency response of resonant systems. 

Figure 2. Time and frequency response of resonant systems.



Micromachines 2016, 7, 160 4 of 56

While the basic second-order model of the resonator is quite useful to study a device response near
its resonant frequency, it is often rather simplistic. Most mechanical systems, even those composed of
discrete components, have numerous different mode shapes and corresponding resonant frequencies.
If the resonant frequencies are far from each other, the device response can be analyzed using the basic
mass-spring-damper method around each resonant frequency. Otherwise, a higher order model needs
to be constructed that can potentially include the coupling between different modes. Some continuous
mechanical systems can be broken into simpler subsystems, allowing for the treatment of the system
as a lumped one. This is particularly helpful when it is possible to estimate concentrated masses and
the effective stiffnesses of bodies that connect them to each other within the structure. In many cases,
however, the whole system needs to be treated as a distributed mass-spring system. Dynamics of such
systems is studied using the acoustic wave propagation models and theories [22].

Distributed systems, in theory, have infinite mode frequencies and shapes. In practice, however,
a limited number of these modes need to be studied in a frequency band of interest. The basic
spring-mass-damper model can once again be used if one estimates the effective mass and stiffness
of the system for the particular mode shape of interest. Rayleigh’s method is a fairly robust and yet
simple technique to estimate the effective mass and stiffness of a system once good estimates for the
mode shape of the device are available [23,24]. If the losses can be ignored, the resonant frequency of
the nth mode of the system can be found from:

ω2
n =

−→
[x]
′
[K]
−→
[x]

−→
[

.
x]
′
[M]

−→
[

.
x]

(7)

where [K] and [M] are the stiffness and mass matrices for the system and
−→
[x] and

−→
[

.
x] are the

displacement and velocity vectors for the nth mode shape of interest, respectively.

3. Electric Circuit Representation

In a typical microresonator application, the micromechanical structure is forced into vibrations
by converting an input electrical signal into a force and applying it to the device. Vibrations of the
structure are then picked up and often converted back to the electrical domain through various
transduction techniques. Consequently, from the point of view of interrogating instruments, the device
is assumed electrical. On the other hand, it is common to use the analogy between electrical and
mechanical resonators to build an equivalent electrical circuit for a micromachined resonator [21,24–26].
Such a model is often built from a set of experimental measurements and then is used in electric circuit
simulators. This approach is particularly useful if the resonator needs to be modelled with the drive
or sense electronics, allowing for co-simulation of the entire system within the electrical domain.
To represent a mechanical device with electrical elements, proper mapping of mechanical to electrical
quantities is needed. A common set of mapping rules is summarized in Table 1 [24–26].

Table 1. Correspondence between electrical and mechanical domains.

Mechanical Domain Electrical Domain

Force, F Voltage, V
Velocity,

.
x Current, I

Displacement, x Charge, q
Compliance, 1/K Capacitance, C

Mass, M Inductance, L
Damping, ζ Resistance, R

In most cases, a resonant device is modelled as a series Resistance-Inductance-Capacity (RLC)

circuit. The transductions from the electrical to mechanical domain and vice versa are modelled with



Micromachines 2016, 7, 160 5 of 56

transformers with proper winding ratios or controlled voltage or current sources. Other elements,
especially parasitic and feedthrough capacitors, may be added to the equivalent circuit so that the
model produces results similar to experimental measurements. Figure 3 illustrates an equivalent
electrical model for a microresonator with electrostatic input and output ports. The transformer at the
input port converts an input voltage to a force and applies it to the mechanical system represented
by the series RLC circuit. At the output, another transformer converts velocities of the mechanical
structure back to an electrical current. Similar models can be developed for other transduction
mechanisms such as piezoelectric or thermal devices considering the mechanisms involved in
converting the electrical signal to a mechanical one and vice versa. In all cases, the electromechanical
coupling coefficients, ηin and ηout, need to be defined according to the employed transduction
mechanism. It is common practice to simplify the model further by removing the transformers
and scaling the equivalent circuit values accordingly. Note the inclusion of the feedthrough capacitance
in the model. This parasitic capacitance in many cases poses a challenge in a proper measurement of
resonator response as the feedthrough current that travels through it can be significantly larger than
the current produced by the resonator.
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Figure 3. Equivalent electrical representation of an electrostatic resonator including the feedthrough
capacitor C f and parasitic capacitors Cpi and Cpo.

Modelling of Nonlinearities

There can be several sources of nonlinearities in micromechanical resonators [27–33]. Elastic properties
of most materials are a function of stresses applied to them. Even brittle materials such as silicon
exhibit some stress-dependent behavior under large stresses [34]. On the other hand, internal stresses
produced from large displacements can alter the stiffness of the structure, as is the case for the
stiffening of beams under large loads. Both of these phenomena affect the dynamic response of the
device. In many cases, for instance where electrostatic or thermal actuators are used, the actuation
mechanism itself is inherently nonlinear. Even when the actuation mechanism is linearized for small
displacements, for example by adding a large DC signal to the AC actuation signal in electrostatic
resonators, there can be other sources of nonlinearities. For example, the electrostatic force produced
by a voltage applied between two parallel electrodes can be found from:

Fe =
1
2
∇CV2 (8)

where ∇C is the gradient of the capacitance between the two electrodes and V is the voltage applied
between them. While the nonlinear dependence on input voltage is apparent, in many cases the
gradient term is a function of the separation between the electrodes, and hence can vary nonlinearly as
the two electrodes move with respect to each other [29].

A well-known consequence of nonlinearities is a jump phenomenon in the frequency response
of the device as the resonant frequency of the device will depend on the signal amplitude.
This phenomenon is known as bifurcation. If the device response is studied through frequency sweeps,
one will observe different device responses for upward or downward sweeps. For nonlinearities
that increase the stiffness of the structure, the resonant frequency shifts up while those which
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soften the structure (e.g., electrostatic nonlinearities), the resonant frequency moves towards lower
frequencies [35]. Nonlinearities in resonators has been studied extensively for macro- and micro-scale
device [21,29,36,37]. The resonator nonlinearities are modelled by adding higher order terms to the
effective spring constant of the structure and solving the resulting nonlinear equation of motions.
Perturbation analysis is often employed to analyze the behavior of the systems with small nonlinearities.
It has been shown that the total nonlinear behavior of the system can be modified by taking
advantage of the different, and sometimes opposite, interactions between different mechanisms
of nonlinearity [38,39].

4. Resonance Modes

4.1. Flexural Modes

Flexural mode vibrations are characterized by bending of the structure along its length (l) such
that the motion in the transverse direction perpendicular to the length. Flexural modes can be excited in
both beam and plate structures. In the case of beams, the motion could be within the plane of fabrication
(i.e., along its width w) or out of plane (i.e., along its thickness t). For beam structures, the vibration
mode shape is determined by the boundary conditions applied to the structure. Various examples of
flexural mode shapes are illustrated in Figure 4 along with the corresponding boundary conditions
applied to the beam. The resonant frequency of a given mode for a beam resonator of length L and
thickness t vibrating out of plane can be generalized according to the following formula:

f = β

(
t

L2

)√
E
ρ

(9)

where β is a dimensionless coefficient that is determined by the shape of the vibration mode, which in
turn is depends on the respective boundary conditions applied to the structure. Equation (9) assumes
that the beam is fabricated with one material whereby E denotes the Young’s modulus and ρ is the
density. As can be seen from Equation (9), the resonant frequency is independent of the beam width
when it is vibrating in the thickness direction. Figure 4 summarizes the most common flexural modes
based on beam structures, classified according to the boundary conditions applied. The corresponding
values of β have been referenced from [40].

As depicted in Figure 4a, a cantilever such as the ones reported in [41–45] is defined by a beam that
is clamped at one end and free on the other such that the maximum deflection takes place at the tip of
the beam furthest away from the clamped end. As illustrated in Figure 4b the clamped-clamped
or doubly-clamped beam such as the ones reported in [46–49] is defined by both ends of the
structure clamped such that the maximum deflection takes place at mid-length. Both cantilever
and clamped-clamped beams are commonly adopted structures for mass sensing applications due to
their structural simplicity and potential for realizing small proof masses [50,51]. Finally, as shown in
Figure 4c it is also possible to realize a flexural mode free-free beam whereby both ends are free [52].
The beam here is clamped at two positions along the length where the deflection is zero [18].
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Figure 5 illustrates the fundamental modes observed in membrane structures, most of which
are square or circular. The edges of the membranes are clamped and the maximum deflection occurs
at the center of the membrane. The resonant frequencies of plate structures follow the form of the
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Equation (9). Membrane resonators are commonly used to implement micromachined ultrasonic
transducers (MUTs) [53,54].Micromachines 2016, 7, 160 7 of 55 
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4.2. Bulk Modes

In contrast to flexural mode resonators, bulk mode resonators are characterized by deformation of
the structure through planar expansions or contractions rather than bending. In terms of geometrical
dependence, the resonant frequencies of bulk modes only depend on the lateral physical dimensions of
the structure (e.g., width or length). In other words, the lateral features of the structure alone determine
the acoustic wavelength (λ) of the vibration mode. As such, the resonant frequencies of bulk mode
resonators can be generalized by the following form:

fbulk =
β

λ

√
Ebulk
ρ

(10)

where Ebulk is the effective modulus of the plate structure defined for a given axis of motion. Bulk modes
resonators have been reported for beams [55–57], rectangular plates [58,59], square plates [60,61],
and circular disks [62,63]. In the case of bars/beams, Ebulk simplifies to the Young’s modulus.
In comparison to flexural mode resonators, bulk mode resonators are much stiffer for the same physical
dimension scales. This in turn translates to higher frequencies for the same physical dimensions.
As such, bulk mode resonators are favored over flexural mode resonators for higher frequency
applications owing to their more efficient frequency-to-size scaling characteristic. The mode shapes of
various examples of bulk mode resonators reported in the literature are illustrated in Figure 6. In the
case of bulk modes, the standing waves in the solid structures are longitudinal waves. It can also be
seen that every part of the structure undergoes either compression or expansion apart from the center.
The center of the structure is the most obvious choice to clamp the structure wherever possible from
the viewpoint of the fabrication from the perspective of minimizing losses to the supports. It should
be noted that the lateral bulk modes described in Figure 3 can each be excited at higher order modes
of vibration. This is rather commonly the case for the length-extensional (LE) and width-extensional
(WE) modes. As an example, the 5th order mode of the WE mode of vibration is illustrated in Figure 7,
which can be described as having 5 nodal lines. Higher order modes are particularly common in the
case of piezoelectric resonators [64]. Lateral bulk modes of resonance, particularly when applied to
piezoelectric resonators, are referred to as contour modes [65] wherein the acoustic radiation patterns
are viewed as contours in the plane of fabrication. This is in contrast to thickness vibration modes that
are typically viewed by devices such as the film bulk acoustic resonator (FBAR) [66].
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This feature of being defined by shear is evident when one considers the mode shapes. In 
square plates, shear modes that have been observed include the Lamé [67–69] and face shear (FS) 
[70] modes, which are depicted in Figure 8a,b respectively. In both cases, the direction of motion is 
always equal and opposite between two orthogonal axes within the plane of fabrication. In other 
words, while the structure is defined by expansion in one axis, it is simultaneously defined by 
contraction in the orthogonal axis. In every part of the plate, the in-plane strain components are 
equal and opposite, thereby cancelling each other out when summed up. As such, the volumetric 
change is theoretically zero everywhere across the square plate. This isochoric property leads to the 
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4.3. Shear Modes

Shear mode resonators are similar to bulk mode resonators in that their acoustic wavelength is
also determined only by the lateral features of the structure. However, in contrast to bulk modes,
shear modes are defined by shear waves instead of longitudinal waves. As such, their stiffness
constants are defined by the shear modulus of the structural material rather than the Young’s modulus.
Therefore, the resonator frequency of lateral shear modes is given by the shear modulus G, instead of
the Young’s modulus:

fshear =
β

λ

√
G
ρ

(11)

This feature of being defined by shear is evident when one considers the mode shapes. In square
plates, shear modes that have been observed include the Lamé [67–69] and face shear (FS) [70] modes,
which are depicted in Figure 8a,b respectively. In both cases, the direction of motion is always equal
and opposite between two orthogonal axes within the plane of fabrication. In other words, while the
structure is defined by expansion in one axis, it is simultaneously defined by contraction in the
orthogonal axis. In every part of the plate, the in-plane strain components are equal and opposite,
thereby cancelling each other out when summed up. As such, the volumetric change is theoretically
zero everywhere across the square plate. This isochoric property leads to the interesting feature of
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lateral shear modes having theoretically no thermoelastic damping (TED). TED arises from irreversible
heat flow between regions of expansion and contraction, and since there is no volume change during
the operation of the resonator TED is thus zero in principle. Low TED allows for resonators with
high quality factors in the millions. Consequently, adding holes in the structure for the purpose of
fabrication breaks the isochoric property and introduces TED, resulting in a substantial drop in quality
factor [71,72]. The shear wave appears 45◦ to the primary axis of deformation. In either case of the
Lamé and FS modes, nodes appear at specific points along the edges of the square plate, where the
structure can be conveniently clamped to minimize support losses where the displacement is zero but
there is some rotation. For elastically anisotropic materials like single-crystal silicon, the relevant shear
modulus is given by the axis of the shear wave.
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(b) FS mode, β = 1.283, λ = 2L.

Shear modes have also been realized in circular disks as shown in Figure 9, from which we
can see once again that the motion in one axis is equal and opposite to the orthogonal axis. This is
commonly referred to as the wine glass mode [73,74]. Given the symmetry of the structure, the same
elliptical mode shape can occur in two axes 45◦ apart. In isotropic solids, the two modes share the
same frequency, which is known as mode degeneracy. In anisotropic solids, the two modes occur at
slightly different frequencies [75].
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4.4. Torsional Modes

Torsional mode resonators are most typically found in the form of paddle resonators,
which comprise a plate that is supported on two opposite ends by beams. The paddle resonator
oscillates by means of rotating about the axis along which the supporting beams lie as illustrated in
Figure 10. The supporting beams are clamped at the ends and experience a twisting motion as the
plate oscillates about the axis of rotation. The beams undergoing torsion thus form the spring of the
resonator and thereby define the spring constant while the rotating plate approximates to a rigid body
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that defines the proof mass of the resonator [76]. Torsional mode paddle resonators have been applied
to sensing applications that include electrometers [77] and magnetometers [78].
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4.5. Coupled Resonators

The above examples of this section have included only single resonators so far. Single resonators
can in turn be mechanically coupled to realize an array of identical resonators. Assuming the same
vibration mode for each resonator, the number of modes possible in an array increases with the size
of the array. If the resonators are coupled to each other strongly, the frequency separation between
the modes gets widened. This approach is particularly favorable for the purpose of increasing the
output signal strength of MEMS resonators by creating arrays of the same resonator, synchronized to
vibrate at the same frequency [79]. This is particularly useful in lowering the insertion loss of
filters [80,81] as well as reducing the phase noise of MEMS oscillators [82,83]. Strong mechanical
coupling has been demonstrated using coupling structures with lengths that are multiples of the
acoustic half-wavelength (i.e., nλ

2 , where n = 1, 2, 3, . . . ) [84,85]. An illustration of an array of square
plate resonators mechanically coupled together for synchronized oscillation is provided in Figure 11.
Note that all the resonators in the array are vibrating in the Lamé mode and the phase between the
resonators are the same [85]. While strong coupling pushes the modes apart, weak coupling results in
closely separate modes, such as in defining a narrow passband in filters [86]. Weak mechanical coupling
is similarly achieved by using coupling structures with lengths that are odd multiples of a quarter of
the acoustic wavelength (i.e., 2n−1

4 λ, where n = 1, 2, 3, . . . ) [80]. Alternatively, the electrostatic spring
tuning effect that arises from the nonlinearity in a capacitive gap transducer can be used to realize
a weak spring that is a function of voltage across the transducer. This electrostatic spring is used as the
mechanical coupling element between the resonators [87]. Tuning the voltage across the transducer
changes the coupling spring, which in turn tunes the separation of the passband [88]. Weakly coupled
resonators are particularly interesting for sensing applications through exploiting mode localization,
which involves manipulation of energy between two coupled modes [89]. This approach has been
found to be beneficial for enhancing sensitivity by a few orders of magnitude [90] in comparison to
conventional resonant sensing that depends on the perturbation of frequency while at the same time
rejecting common-mode effects [91].
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4.6. Other Modes

Based upon the WE mode, modifications to the geometry of the resonator have been made with
the aim of concentrating the acoustic energy towards the center of the bulk mode resonator in order
to reduce the energy distributed at the clamped ends of the resonator. Reducing the energy at the
clamped ends of the resonator ultimately reduces leakage of energy to the substrate, thereby improving
the quality factor of the resonator. Modifications with the aim of acoustic engineering include curving
of the free edges of the resonator [92] or introducing steps [93].

5. Damping

A portion of the elastic energy stored in an electromechanical resonant system could escape the
system in the form of acoustic or electromagnetic waves (acoustic phonons or photons) or irreversibly
transform to heat (thermal phonons) within the structure. In this chapter we briefly describe the major
mechanisms for such energy loss (i.e., damping) processes. Given the energy loss through all damping
mechanisms is known, the overall quality factor of a resonator can be found by summing up the
dissipated energies [94]:

Qtotal =

(
∑

1
Qi

)−1
(12)

where Qi corresponds to damping from each potential loss mechanism.

5.1. Viscous Losses

Anytime a resonator operates inside a fluidic (gaseous or liquid) medium the resonator
boundaries/surfaces continuously push against the surrounding molecules and transfer a portion of
the resonator kinetic energy to the surrounding. This mode of energy loss is known as viscous loss
or more particularly air damping (when the resonator operates in air). Viscous losses are a dominant
source of loss in micromachined resonators as the surface to volume ratios become significantly larger
at micro-scales [95]. The air damping is dependent on a variety of parameters including the resonator
dimensions, the distance between the moving body of the resonator and the surrounding fixed
surfaces (such as the electrodes in capacitive resonators or package walls), the frequency of operation,
the resonance mode (i.e., how surfaces move relative to each other), and the gas pressure surrounding
the resonator. Considering such complexity, one characteristic parameter that is commonly used to
analyze the air damping is the Knudsen number (Kn). In this context, Kn is defined as the ratio of the
fluid molecular mean free path to the separation between the resonator and the fixed surrounding
structures. The Kn > 1 range is of practical significance as the majority of vacuum packaged resonators
operate under this condition. In this regime of operation, the interaction of air molecules could be
ignored as the collision of the air molecules with the resonator plays a dominant role. There have
been several attempts to model the air damping in this regime with reasonable success [96–98] but
an accurate prediction of the loss appears to be yet out of reach.

In practice, the air damping is often avoided by packaging the resonators in partial vacuum.
The Q vs. pressure graphs for micro-resonators typically follow a trend similar to what is shown in
Figure 12. As seen in this figure, beyond a certain vacuum level, the effect of pressure (air damping)
is negligible and other sources of loss dominate the effective quality factor. This is exactly the range
targeted by the manufacturers as the sharp change of Q as a result of the variation in pressure could be
detrimental to the performance and should be avoided.
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the anchor-to-resonator connection relative to the acoustic wave-length and to align the center of the 
anchors to the nodal points of the resonance mode where the particle displacement on the resonator 
body is minimum [18,103]. However, there are limitations in implementation of this guideline due to 
fabrication imperfections such as misalignment [63] and as the acoustic wavelength reduces beyond 
the smallest feature sizes practically feasible (for high frequency devices). 
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5.2. Anchor Losses

Most resonators have to be suspended through mechanical connection(s) commonly known as
anchors that attach the resonator to a supporting frame. At resonance the elastic waves trapped in the
resonator can leak through these same connections and propagate to the frame causing loss of energy.
This type of loss is often called anchor/support loss (Figure 13). From this definition it is perceived that
anchor loss is strongly dependent on the location and the size of the anchor. Analytical prediction of
anchor loss is complicated and is accomplished for a limited class of resonator (mainly beams) [99,100].
However, finite element models capable of capturing the anchor loss are developed in recent years
and are finding increasing popularity among designers to suppress the anchor loss during the design
phase [101,102].
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A universal guideline for mitigation of anchor loss is to reduce the cross sectional dimensions of
the anchor-to-resonator connection relative to the acoustic wave-length and to align the center of the
anchors to the nodal points of the resonance mode where the particle displacement on the resonator
body is minimum [18,103]. However, there are limitations in implementation of this guideline due to
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fabrication imperfections such as misalignment [63] and as the acoustic wavelength reduces beyond
the smallest feature sizes practically feasible (for high frequency devices).

An alternative approach explored by researchers is to add features around the resonator that
effectively reflect a portion of the radiated elastic energy back to the resonator. Such acoustic reflectors
could simply be trenches etched into the substrate [104,105] or phononic crystal structures that are
tuned to block a narrow band centered around the frequency trapped in the resonant cavity [106,107].
Phononic crystals can also be embedded in the design of the suspension tether [108,109].

5.3. Material Losses

Both viscous and anchor losses share the same characteristic in that the resonator elastic energy
leaves the resonator for both mechanisms. In contrast there are a variety of mechanisms through which
the elastic energy irreversibly turns into heat within the body of the resonator; hence categorized
as material losses. The most fundamental and general approach to understanding such losses is
through a quantum mechanical view. In quantum mechanical terms, the quanta of vibration energy
are called phonons. Based on this definition, the elastic energy stored in a resonator is carried
by phonons (elastic phonons). Similarly, heat energy, which is basically the random vibrations of
particles, is embodied by phonons as well (thermal phonons). With this brief introduction, it can be
envisioned that elastic phonons interact with other quantum mechanical particles inside the resonators
including thermal phonons and electrons through a scattering process [110]. The end result of such
intercalations is transformation of elastic energy to heat within the resonant body. The loss associated
with the phonon-electron interaction is understandably not significant in dielectric and lightly-doped
semiconducting material which are commonly used as the bulk of the micromachined resonant body.

In all resonators, depending on the relative values of the mean phonon scattering time (τs),
elastic vibration period (τv), and the thermal transport time constant (τth) a certain phonon-phonon
interaction process could become dominant [111]. In flexural resonance modes of beams when τv ≈ τth
(i.e., the average time it takes for phonons to transport between the local hot and cold spots is equal to
the vibration period), elastic phonons efficiently interact with thermal phonons through a diffusion
process. This process is classically described as thermoelastic damping (TED) [112]. TED in bulk mode
resonators is insignificant and is practically absent in shear mode devices. A great body of effort exists
on analytical and numerical modeling of TED [112–116]. Researchers have also attempted to reduce
the effect of TED by engineering τth to be as far from τv as possible [117,118].

Apart from TED, in all resonators the periodic change of atomic spatial arrangement will disturb
the equilibrium phonon distribution and as long as τs < τv it results in a redistribution of phonons
through phonon-phonon scattering. This process is known as Akheiser loss and sets a fundamental
limit on the quality factor that could be achieved in a resonator depending on the material chosen for
the resonator [110]. This loss is proportional to vibration frequency and becomes more significant at
high frequencies ( f > 100 MHz for most relevant acoustic material). It should be noted that Akheiser
loss is no longer effective for τs > τv (very high frequencies) and the limit of quality factor could
be relaxed at such frequencies [119]. This new regime of high frequency loss was first described by
Landau and Rumer and the onset of this loss process (i.e., τs = τv) could greatly vary between different
materials (Figure 14).
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5.4. Other Damping Sources

There are several other pathways for the elastic energy to turn into heat including (but not limited
to): ohmic losses due to electrical currents passing through resistive paths, dielectric losses [120]
due to established electric fields across dielectric films, and surface losses [121] due to non-idealities
associated with surface roughness and contaminations and electromagnetic radiation losses due to
variation of electric fields. Ohmic and dielectric losses are relatively straight forward to predict and
manage, however, the physics of surface losses are rather complicated. Regardless of such complexities
it is been practically shown that the surface losses could be minimized through vacuum annealing and
avoiding large surface to volume ratios [122].

6. Transduction Mechanisms

In most applications, micromachined resonators are interfaced with electronic circuits. Therefore,
the mechanical vibration in the resonator should be excited and sensed by an electrical signal
(i.e., change in a voltage or a current). The choice of mechanism through which the electrical energy
is reciprocally converted to elastic energy (i.e., mechanical vibration) plays a critical role in the
overall performance of a product that contains the resonator. Factors associated with the transduction
mechanism such as efficiency of the energy conversion (i.e., coupling coefficient), implementation
simplicity, and power consumption should be carefully considered and analyzed. In this chapter
the most commonly used transduction mechanisms are briefly discussed and their main properties
are highlighted.

6.1. Capacitive

A voltage applied between two conducting plates separated by an insulating medium generates
a force that could move the plates given one is free to move. Reversely, change of capacitance as a result
of movement induces an electrical current given a constant voltage is applied to the conducting plates of
the capacitor. This is the original mechanism exploited in capacitive resonators. Capacitive transducers
are relatively easy to implement as there is no special requirement on the choice of material except for
high electrical conductivity of the electrode plates. With this, it is no surprise that the first published
micromachined mechanical resonators operated based on capacitive transduction [2] and it continues
to be a very common choice for implementation of such resonators.

The essential components in a capacitive beam resonator are schematically shown in Figure 15 for
a two-port configuration. The alternating input electrical signal in this diagram is applied through
a fixed electrode on one side to excite the mechanical vibration and on the other side the mechanical
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movement is converted back to an electrical current in a symmetric design. A DC voltage labeled
Vp (polarization or bias voltage) is connected to the resonator body to establish the required initial
electric field.
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As seen in the above schematic diagram, the resonant body usually constitutes one of the
electrodes in a capacitive resonator. Therefore, the material used for the resonant body is required
to be highly conductive. In the past, doped silicon/polysilicon [13,123] and doped polycrystalline
diamond [124] have been the most common choices of material for a capacitive micro-resonator.
Silicon and polysilicon are the most natural choice considering that the micro-fabrication industry
is mainly developed around processing silicon-based material. Silicon is coincidentally an excellent
choice of material for its excellent mechanical properties including, low loss and exceptional
mechanical/chemical stability (i.e., negligible change of properties over time). Some of the highest f.Q
products measured from MEMS resonators are reported for capacitive resonators as the resonant body
could be fabricated from a single material which eliminates any interfacial loss existing in multi-layer
resonators [125,126].

It can be shown that the electromechanical coupling factor for a capacitive resonator, defined as
the ratio of the output mechanical force over the input electrical voltage, is derived from [94]:

η = Vp
dC
dx

(13)

where Vp is the polarization voltage, C is the transducer capacitance, and x is the resonator
displacement. From this equation one could conclude a number of basic properties of capacitive
transduction. First, it is observed that the electromechanical coupling at microscale is a very small
number (e.g., η ∼= 10−7 for Vp = 10 V, Capacitive Area = 10−9 m2, Capacitive Gap = 10−6 m,
and assuming a parallel plate displacement in vacuum). This implies that capacitive transduction is not
inherently an efficient energy coupling mechanism. Secondly, it is observed that the electromechanical
coupling could be improved by increasing the polarization voltage and increasing the rate of
capacitance change with respect to displacement which is proportional to the capacitive area and
inversely proportional to the second power of capacitive gap. Several approaches have been explored
by designers to improve the energy coupling. These range from simply increasing the capacitive
area [58] or reducing the gap size to extremely small values [127]. Both of these approaches encounter
limitations when the frequency of operation is pushed beyond 100’s of MHz as the acoustic wavelength
is excessively reduced and so should the resonator’s critical dimensions. The alternative solution



Micromachines 2016, 7, 160 16 of 56

for improving the coupling at higher frequency is by coupling a large number of resonators to each
other [79]. This approach although very effective adds to the fabrication complexity and may lower
the fabrication yield.

A different approach to implement capacitive transduction is to use a solid dielectric to fill
the gap between the electrode and the resonant body [128]. This class of resonators is relatively
simple to fabricate as the deposition and removal of sacrificial material within the capacitive gaps
which is a major source of failure is completely eliminated. Solid dielectric gap resonators have been
demonstrated with reasonably high-Q at frequencies well beyond 1 GHz [129]. However, the use of
a dielectric material with large permittivity will directly contribute to a large feedthrough capacitance
that masks the resonance signal and will complicate the usage of such resonators in applications such
as oscillators.

6.2. Piezoelectric

Piezoelectric resonators operate based on the direct conversion of electric polarization to
mechanical stress (and vice versa) in a certain class of crystalline materials known as piezoelectric
materials [130]. Piezoelectric resonators such as Quartz have been in use for many decades and are
still the most prevalent technology in electronic applications. The main attractions of the piezoelectric
transduction are the self-generating nature (there is no need for an electrical bias or power consumption)
and the relatively large coupling coefficient indicative of efficient reciprocal conversion of electrical and
mechanical energy. The main technical difficulty in working with piezoelectric material at micro-scale
is their incorporation into mainstream microelectronics fabrication processes.

Single crystalline piezoelectric material such as quartz and lithium niobate cannot be simply
grown on a silicon surface in the form of thin functional film. Therefore, alternative deposition
techniques for deposition of properly oriented polycrystalline piezoelectric material should have been
developed before piezoelectric micromachined resonators could be considered relevant. Moreover,
many piezoelectric materials contain metals with high diffusivity or toxicity (e.g., Zinc oxide (ZnO)
and Lead Zirconate Titanate or (PZT)) which cannot be tolerated in microfabrication facilities.

Some of the earliest instances of micromachined resonators were fabricated based on RF sputtered
ZnO thin-film deposited on silicon substrate [131]. However, ZnO is a chemically-unstable material and
resonators fabricated of ZnO have not been successfully commercialized. It was until the development
of RF sputtered piezoelectric Aluminium nitride (AlN) [132] that the thin-film piezoelectric material
slowly gained acceptance in microfabrication industry. In contrast to ZnO, AlN is a chemically stable
material with excellent acoustic properties such as large stiffness and low loss. More importantly
aluminum, the only metallic ingredient in AlN, is commonly used for metallization in microelectronics.

Thin-film piezoelectric micro-resonators could be divided into two main categories. The first category
is the devices that use the thin-film piezoelectric layer mainly as a transducer to generate/sense the
acoustic waves in a second substrate material [131,133,134]. Such devices are sometimes referred to as
thin-film piezoelectric-on-substrate (TPoS) resonators (Figure 16) and can significantly benefit from
the proper choice of the substrate material to improve certain features of the resonator characteristic
such as the quality factor and linearity [135]. In addition to common choices of substrate material
such as Silicon, polycrystalline Diamond has been demonstrated to be an excellent choice for high
frequency applications [136,137]. The combined high-Q and low motional resistance offered by TPoS
devices enabled the demonstration of some of the best oscillator performances achieved from MEMS
resonators [138,139]. The trade-off in using a substrate under the piezoelectric layer in a TPoS resonator
is the compromised coupling factor.
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The second class of micromachined piezoelectric resonators utilizes the piezoelectric film both
as the transducer and the acoustic media. This category conceptually include the very mature
thickness-mode film bulk acoustic resonator (FBAR) technology [66] as well as the more recently
developed contour-mode devices [65,140]. Devices of this category offer low-motional resistances at
very high frequencies that are unmatched by any other MEMS resonator technology and are specifically
useful for filter applications [141,142]. However, the quality factor of such resonators is inferior to the
capacitive resonator and TPoS resonators especially at lower frequencies ( f < 500 MHz).

6.3. Thermal/Piezoresistive

Unlike capacitive and piezoelectric transducers, there are other transduction mechanisms that
could only be used to either excite the vibration or sense the vibration (i.e., one-way transduction).
For example, thermal actuators could only be used for excitation of vibration and piezoresistive
elements could only be used to sense the change in the resistance as the resonator vibrates. Despite such
relative deficiency both thermal and piezoresistive transducers are very attractive for their ease of
implementation. All that is required in both cases is a conductive material through which an electrical
current is passed to either generate heat (in the case of the thermal actuation) or to measure resistance
(in the case of the piezoresistive sensing).

In a thermally-actuated resonator, an alternating current is passed through the resistive heating
elements to generate a dynamic heating power. This varying power will result in a dynamic
temperature distribution (thermal wave) in the resonant structure which is the source of the desired
actuation force. Once the frequency of the thermal wave matches the mechanical resonance frequency
of the structure the mechanical vibration is efficiently excited [94]. Thermal actuation is specially
desired for applications in which a large force is required for excitation of the vibration in liquid
medium [143]. The efficiency of the thermal transduction (force to heat ratio) is dependent on the
thermal time constant associated with the structure. Generally speaking, the equivalent model of
a heat generator with a heat transfer path can be simplified to an RTHCTH circuit where RTH is the
thermal resistance associated with the heat transfer and CTH is the thermal capacitance. In other words,
the temperature (i.e., force) generated by an input alternating power reduces for higher frequencies.
This fundamental behavior has led to the traditional belief that thermal actuators are “slow” and
can only be used for low frequency applications. However, there is a growing body of evidence
pointing to the contrary. Based on some recent and original work on this topic, the thermal actuation
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can be used for very high frequency applications [56]. It could be proved that the thermal time
constant for a specific resonant structure scales much faster (it has second order dependency) than the
resonant frequency (liner dependency) as the dimensions of the structure reduce [144]. In other words,
the temperature of a structure follows the input power much faster (less lag) as the dimensions are
scaled down. A fundamental limitation associated with the thermal actuation that continues to impede
its spread is the required power consumption to generate considerable vibration amplitude especially
at higher frequencies where the structure is stiffer and the amplitude of the alternating temperature is
lower for the same input power.

In thermal resonators the mechanical vibration is commonly sensed through piezoresistivity
which is the change of resistivity in response to stress. In the most general form the piezoresistivity in
material is characterized by a 6 × 6 matrix of piezoresistive coefficients. Semiconductor materials such
as doped single crystalline silicon possess exceptionally large piezoresistive coefficients [145] which
enables an efficient sensing vehicle. Piezoresistive elements could be formed either by deposition and
patterning of a thin film or selectively doping the surface of the silicon substrate [146] separate from
the heating resistor, or alternatively be formed from the bulk of silicon [147] (Figure 17). The latter is
an attractive approach as the same heating element could be used as the piezoresistive sensing element
simplifying the device interface (a two-terminal interface as opposed to four-terminal).
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Figure 17. SEM of piezoeresistively-sensed thermally-actuated resonator: a rotational disk resonator
with boron-doped piezoresistive readout element (a) and a solid single crystalline silicon disk resonator
with combined heater/piezoeresistive silicon beams (b) [147]. © 2010 IEEE. Reprinted with permission
from Rotational mode disk resonators for high-Q operation in liquid by A. Rahafrooz in Proceedings of
the 2010 IEEE Sensors, 2010.

Piezoeresistive sensing has been also coupled with other actuation mechanism such as capacitive
to improve the effective electromechanical coupling [148] as piezoresistive coupling can be enhanced
through increasing the readout current. Piezoresistivity is also the transduction of choice for extremely
small scales [149–151] as other transducers lose efficiency while piezoresistivity enhances [152].
Piezoresistivity is also the most compatible transduction with mainstream CMOS fabrication as
minimum alteration to the process is required [153].

6.4. Other Transduction Mechanisms

Beyond the most common transduction schemes discussed above, several other energy conversion
processes could be utilized for specific applications. For example, electromagnetic Lorentz forces have
been successfully utilized to excite vibration in micromachined resonator [154,155]. Optical sensing
is another mechanism that is relatively popular amongst researchers for detection of the structural
vibrations as the sensing apparatus is completely independent of the resonant structure and can be
used for a wide variety of resonators [156].
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7. Fabrication

7.1. Narrow Gaps

As was previously described, the electromechanical behavior of a resonator oscillating in the
linear regime can be modeled using an inductor-resistor-capacitance (LRC) series resonant circuit
representation. It has also been pointed out earlier that the motional resistance scales inversely with the
fourth order of the capacitive transducer gap for resonators that are actuated and sensed by capacitive
transduction. Given the importance of narrowing the transduction gap in order to reduce motional
resistance, methods for fabricating narrow gaps at the scale of sub-microns have been reported for
polysilicon-based and silicon-on-insulator-based fabrication processes.

In the case of polysilicon beams that were designed to vibrate out of plane that require a vertical
capacitive gap, the gap size is defined by the thickness of a silicon oxide layer typically grown by low
pressure chemical vapor deposition (LPCVD) that acts as a sacrificial layer [18,86]. The oxide layer
can be made as thin as 130 nm. The thin sacrificial oxide layer is patterned (etched away where the
anchoring region are located), followed by deposition of the polysilicon structural layer. After the
polysilicon layer is patterned to form the beam structures, the oxide layer is etched away by buffered
hydrofluoric acid (HF) to leave behind a thin air gap between the beam and the drive electrode.
The process flow for fabricating vertical narrow gaps in a polysilicon-based process is illustrated
in Figure 18.
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While the process flow described in Figure 18 is suitable for realizing out-of-plane vibrating beams
that require vertical capacitive gaps, the process has to be modified to order to realize lateral capacitive
gaps for the case of laterally vibrating bulk mode resonators. The modification in the process requires
extra steps to define the narrow lateral gap as illustrated in Figure 19. As can be seen from Figure 19,
after the polysilicon structure layer that defines the resonator has been patterned, a conformal side
wall high temperature oxide (HTO) film coats the whole structure (including side walls) by LPCVD.
The thickness of the conformal side wall HTO film defines the gap separation of the lateral electrodes.
This is followed by LPCVD low-stress polysilicon to form the side electrodes, which is subsequently
patterned to define the structure of the electrodes. The structure is finally released by HF etch, that also
removes the side wall HTO to leave behind a narrow air gap as thin as 30 nm [62,63].
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Figure 19. Fabrication of lateral narrow gaps in a polysilicon-based process: (a) Conformal growth of
sacrificial oxide to define lateral gaps; (b) Growth and patterning of polysilicon electrodes; (c) Release
of polysilicon structure after removal of sacrificial oxide.



Micromachines 2016, 7, 160 20 of 56

Compared to micromachining MEMS resonators with polysilicon, fabricating MEMS resonators
based on silicon-on-insulator (SOI) wafers offers the advantage of having thicker structural layers
available. The challenge for realizing thick structures in polysilicon lies in keeping the film stress
low. In an SOI process, the resonator structure is almost always defined by the silicon device layer,
which comes available in a variety of thicknesses even up to 100 µm. In the case of laterally vibrating
resonators, thicker structures are desirable for the reducing motional resistance. Narrow gaps are still
needed in SOI-based resonators in order to improve electromechanical coupling. In order to realize
narrow lateral capacitive gaps in an SOI process, the approach of using conformal side wall oxide
to define the gaps needs to be modified. As illustrated in Figure 20, the key difference of fabricating
narrow gaps in single-crystal silicon is instead of growing a polysilicon electrode, the deposited
polysilicon is used as a filling material. The lateral gap is first formed by etching vertically through
the single-crystal silicon by deep reactive ion etch (DRIE). Although DRIE allows for high aspect ratio
trench structures, the desired narrow gaps demand greater precision not practical for DRIE. Hence the
initial gap defined by DRIE is narrowed by first depositing a conformal LPCVD HTO followed by
refilling the HTO-coated trenches with polysilicon. Once again, the electrode gap is defined by the
thickness of the conformal side wall oxide. When the sacrificial oxide is removed by HF etch, a narrow
submicron air gap is formed [123,157,158].

Some research groups have explored the benefits of defining the gap with a solid dielectric,
substituting the silicon dioxide film with a different film that has a higher dielectric constant, such as
silicon nitride. The process flow is the same to what is depicted in Figure 20, except that the nitride is not
etched away. The benefit of this approach is that it allows thinner gaps to be realized, while additionally
increasing the capacitance by means of the high dielectric constant of the film [159,160]. It has been
found that the best location on the resonator to place the solid gaps is at the points of minimum
displacement [128].
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Figure 20. Fabrication of narrow gaps in a silicon-on-insulator-based process using polysilicon refilling
of the gaps etched into the silicon device layer by Deep Reactive Ion Etching: (a) Conformal growth of
sacrificial oxide to define lateral gaps; (b) Growth, etch back and patterning of polysilicon electrodes;
(c) Release of silicon structure after removal of sacrificial oxide.

Others have also shown notable reduction in motional resistance by using a partially filled
gap whereby a part of the air gap between the structural side walls is filled by a high-K dielectric.
The high-K dielectric film thus increases the dielectric constant of the gap electrode overall while still
leaving a thin air gap [160]. This approach aims to deliver high quality factor by keeping an air gap
while improving the coupling efficiency through gap reduction and increasing the overall dielectric
constant of the gap.

7.2. Piezoelectric Layers

As mentioned in the previous section, fabrication of narrow gaps is essential to improving
transduction in the case of capacitive resonators. This brings along additional complexity to the
fabrication process. Piezoelectric transduction offers an alternative to achieve reduced motional
resistance while leveraging on developments in the growth of piezoelectric thin films owing to the
maturity and success of thin film bulk acoustic resonators (FBARs). Among piezoelectric thin films
that have been applied to MEMS resonators, AlN [65,161–163], ZnO [133], and PZT [164] are the most
common ones reported in the literature. On this note, AlN has become highly popular due to its
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compatibility with existing fabrication technology for manufacturing integrated circuits. The cross
section of AlN resonators generally comprises a thin AlN film that is sandwiched by bottom and
top metal electrodes. The bottom electrode acts as a ground, and input AC voltage is applied to
the top electrodes. This results in an electric field that is dropped across the thickness of the AlN
structure. These AlN resonators are designed to vibrate primarily in the lateral modes, of which the
frequency is defined by the lateral features of the resonators (as mentioned in Section 6.2 previously).
Hence although the cross-sectional topology of the AlN MEMS resonator is similar to an FBAR,
the modes of interest are different as the FBAR. The FBAR is designed to vibrate across the thickness of
the film, which thus defines the resonant frequency. The motivation behind AlN MEMS resonators is to
realize integrated resonators that are characterized by low motional resistance and resonant frequencies
that can be lithographically defined towards a multiple-frequency on a single chip solution. As such,
given that the electric field is applied across the thickness and the intended mode of vibration lies
within the fabrication plane, the vibration modes are excited and detected through the d31 piezoelectric
coefficient. FBARs in contrast are transduced through the d33 coefficient. Given that the d31 coefficient
is typically lower than the d33 coefficient, the coupling efficiency of laterally-vibrating resonators is
thus generally lower than an FBAR for the same piezoelectric material.

Apart from realizing a piezoelectric resonator with only the piezoelectric film to define the
structural layer, some research groups have implemented resonators comprising a thin piezoelectric
film on a thick substrate layer. In this case, the structural layer is defined mainly by the substrate
material, examples of which include single-crystal silicon [59,165–168], silicon carbide [169–171],
and diamond [172,173].

Pursuant to reaching higher coupling coefficients towards realizing low insertion filters based
on laterally vibrating resonators, some groups have turned to materials with higher piezoelectric
coupling coefficients such as Lithium Niobate (LiNbO3). The process differs from the above as device
is fabricated from the wafer itself as the material cannot be deposited as a thin film. MEMS resonators
fabricated from LiNbO3 have been shown to exhibit much lower insertion losses compared to AlN
resonators [174–177].

7.3. CMOS MEMS

While the above processes involving silicon processing and deposition of AlN films are compatible
with CMOS fabrication technology, some groups have been explored fabricating MEMS resonators
based on standard CMOS technology. The key advantage of this approach, referred to CMOS MEMS,
is monolithic integration of the MEMS structure with the interface electronics. Most demonstrations of
CMOS MEMS resonators have been reported for either 0.35 µm or 0.18 µm technologies. There are
several ways in which a MEMS structure can be realized from the layers of polysilicon, interlayer
dielectrics, and metals included in a standard CMOS process.

One approach is to use the polysilicon layers to define the MEMS resonator and electrodes.
In the case of [178–182] where there are two polysilicon levels, one polysilicon level was used for the
resonator while the other polysilicon level was used for electrodes. In this case, the oxide layer between
the two polysilicon levels defines the lateral gap between the side electrode and beam resonator,
allowing gaps as narrow as 40 nm to be realized. As such, the oxide layer here serves as a sacrificial
layer. The thickness of the resonator is defined by the polysilicon thickness, which is typically a few
100 nm and therefore much thinner than the polysilicon resonators described in Section 6.1 previously.
This in turn places a limit on the transduction efficiency.

The other approach found from the literature is to use the top metal layer to define both the
MEMS resonator and the electrodes [183,184]. In this case, the minimum achievable gap between the
electrode and the MEMS structure is determined by the technology layout rules (i.e., the minimum
gap between two features defined in the same metal level allowed in the process). In this case, as the
MEMS resonator is defined in the metal layer, the thickness of the MEMS resonator will be determined
by the thickness of the metal layer, which can be almost 1 µm. Compared the previously mentioned
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approach of using a spacer, realizing the MEMS resonator with the top metal layer allows a thicker
structure but with the drawback of a wider capacitive gap.

The above two approaches define the resonator using the conductive layers that are available in
the CMOS technology stack, of which only one layer is used. The last approach in contrast uses several
of the layers that include both metals as well as interlayer oxide layers in order to realize a structure that
is much thicker [185–187]. In this approach, the metal layers are physically and electrically connected to
each other vertically through vias. These interconnected metal features are used to realize conducting
sidewalls in both the beam resonator and the electrodes, embedded within an oxide matrix formed by
the different layers of interlayer oxide. The other function of the interconnected metal features is to
serve as vertical sacrificial features that extend through the entire thickness of the MEMS structure.
These sacrificial metal features are exposed to the etching solution that selectively etches away the
metal, while the metal sidewall features embedded in the oxide matrix are protected from the etchant.
There is also the final option to release the structures from the underside by etching the exposed top
side of the silicon substrate with XeF2. Out of plane vibration mode structures can also be realized
using this approach and integrated with a MOS field effect transistor (FET) to implement a resonant
gate FET [187] that has the advantage of incorporating intrinsic gain.

7.4. Packaging

Adequate packaging of resonators for the purpose of extending reliability is essential given that
these devices are extremely sensitive to the external conditions. The package provides a barrier against
exposure of the device to dust and moisture. In the particular case of capacitive resonators, the device
needs to be sealed at moderate vacuum pressure levels in order to reduce viscous damping. There are
two main approaches that have been used to seal the device at the wafer-level.

The first involves attaching a capping wafer onto the processed wafer with the resonator,
which typically is either glass or silicon [188–191]. The capping wafer is typically processed by etching
recesses into the wafer to create a cavity to accommodate the MEMS device to be encapsulated.

The other approach involves depositing an encapsulation material directly on the wafer processed
with the MEMS device. Prior to the deposition of the encapsulation layer, a sacrificial layer is
deposited over the processed MEMS device. The encapsulation layer could be a polymer [192]
or combination of a metal and organic film [193–195] where the sacrificial layer is also an organic film.
The benefit of using metal and organic films as the encapsulation layer is that the process can be done
at low temperatures and thus compatible as a post-processing step. An alternative to implementing
encapsulation as a post-processing step is to integrate packaging into the process for fabricating silicon
resonators, using encapsulation materials such as polysilicon [195] or epitaxial silicon [196]. In this
case, silicon oxide is used as the sacrificial layer that is deposited over the SOI wafer which has been
processed with the resonator. The first encapsulation layer is then deposited and etched through to
create vents. The resonator is released from the substrate and encapsulation layer through vapor HF
etching, followed by sealing the wafer with a second encapsulation layer that seals off the vents.

8. Applications

8.1. Timing

For over a decade, MEMS resonator-based oscillators have moved towards commercialization for
timing applications [8,10,12,197,198], mainly focusing on wired communications standards such as USB
and on real-time clocks. The reason why MEMS oscillators are more slowly penetrating RF systems as
frequency references is due to their fairly stringent phase noise requirements. These requirements stem
from the synthesized carrier spectral purity specified by the majority of wireless standards. The close-in
phase noise performance requirements are particularly challenging in wireless standards, as resonator
non-linear behavior and somewhat lower-Q-factor than quartz usually degrades performance at
close-in offsets to be as competitive for such applications. However, in serial communications,
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where clock-data recovery circuits filter close-in phase noise due to their feedback nature, close-in phase
noise performance is relaxed, allowing MEMS resonator-based oscillators to penetrate these applications
regardless of their somewhat lower close-in phase noise performance [15,199].

In addition to phase noise performance, an important requirement of timing applications is
the frequency stability of the oscillator. Recently, temperature compensation algorithms or resonator
fabrication techniques have allowed MEMS resonators to match the performance of quartz temperature
compensated oscillators (i.e., TCXOs) with regards to temperature stability [199]. Real-time clocks,
requiring oscillators operating at 32.768 kHz are of particular interest such as demonstrated
in [200–203], where the resonator-based oscillator is interfaced with a phased-locked loop to synthetize
the desired frequency output, and improve its temperature stability through the use of a temperature
sensor and calibration data. In [203], a phase-locked loop is not used for this purpose in order to reduce
power consumption, but a state machine determines the fractional division ratio of the oscillator output
based on the output of a temperature sensor and calibration data. This method achieves an output
frequency stability of ±10 ppm over 0 to 50 ◦C. In [202], a resonator is placed in a Pierce oscillator loop
shown in Figure 21a [202]. Its 524 kHz output is fed to a dual-mode compensation circuit that can
generate the 32 kHz required output, shown in Figure 21b [202]. In compensated mode, a modified
fractional-N phase-locked loop can be activated to provide precise temperature compensation by
modulating its output frequency based on the output of a temperature sensor. This allows to maintain
the output frequency steady regardless of frequency drift due to temperature in the MEMS oscillator.
In low-power mode, the phase-locked loop can be bypassed in order to generate an uncompensated
output for applications that do not require compensation and which can benefit from the reduced
power consumption. In low-power mode, the current consumption is of 0.6 µA (1.4 V supply),
and when temperature compensated it is of 1.0 µA (1.4 V supply). The system achieves a ±100 ppm
frequency stability over −40 to 85 ◦C in low power mode, and of ±3 ppm in temperature compensated
mode. Note that the temperature compensation in this system requires calibration to allow for the
most effective compensation of the resonator’s temperature characteristic.
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Similar efforts have also been done using phase locked loops to generate MHz range output
frequencies for systems targeting serial communications such as in [204] where a 5 MHz MEMS
resonator-based oscillator is used as the frequency reference of a fractional-N phase-locked loop
to generate output frequencies ranging from 1 MHz to 110 MHz with a ±30 ppm stability
from −40 ◦C to 85 ◦C. Another design improves the temperature compensation to ±0.5 ppm
accuracy from −40 ◦C to 85 ◦C and widens the output frequency range from 0.5 MHz to 220 MHz,
consuming 3.97 mA from a 3.3 V supply [205].

Alternatively, some other temperature compensation techniques rely on dual resonator devices
that have different temperature coefficients and are placed in a thermal feedback loop. These attain
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frequency stabilities of ±1 ppm over −20 ◦C to 80 ◦C in [206], and of ±4 ppm from −40 ◦C to 70 ◦C
in [207], and interestingly do not require calibration, which is a significant advantage in order to reduce
device cost. However, these techniques require heating of the resonators, and thus will consume higher
amounts of current that are on the order of a few milliamps.

Considering wireless standards, in [208], while no temperature compensation loop is implemented,
a fractional-N phase locked loop with a MEMS resonator-based oscillator running at 11.6 MHz
is presented with an RF output frequency of 1.7–2 GHz and attempts at meeting the local RF
oscillator wireless standards performance metrics of GSM, such that the reported phase noise attained
is −122 dBc/Hz at a 600 kHz offset, and −137 dBc/Hz at a 3 MHz offset. Close-in phase noise
performance precludes the system from meeting wireless phase noise standards (e.g., error vector
magnitude), because of the relative low Q-factor of the resonator used.

8.2. MEMS Resonator-based Oscillators

As was previously discussed, the electrical model applicable to all resonators is a series-resonant
RLC circuit with capacitive feedthrough causing parallel resonance as well. If resonators are operated
as channel-select filters such as in [209], typically no interface electronics are required to achieve the
filtering operation. However, if present as filters in radiofrequency (RF) systems such as receivers,
they may be embedded into electronic circuits such as mixers in order to reduce the impact of their
typically higher insertion losses on the overall noise figure of the systems [15,210,211].

Typically, MEMS resonators are interfaced with sustaining amplifiers that allow for their use
in electronic oscillators that generate an electrical signal at the resonant frequency of the resonator
such as demonstrated in [211]. When used in sensors, resonators will usually operate through some
functionalized MEMS resonator that varies its frequency in response to sensed element such as in [212].
When used in timing circuits as precision clocks [200] or as RF carriers [10], MEMS resonators are
used as the frequency reference element. Whether MEMS resonators are used in sensing or in timing
applications, the sustaining amplifier needs to carefully be designed to consider the particularities of
MEMS resonators in order to enable high quality oscillation [213–216].

MEMS resonators, while similar in function to quartz crystals, have properties that require specific
interface circuitry designs. For instance, unlike quartz crystals that can have milliamp scale output
motional currents, the output motional current of a MEMS resonator is typically in the nano-ampere
range [217,218]. In addition, their insertion losses, in the case of electrostatically driven resonators,
can represent motional resistances in the 1 kΩ–100 kΩ range [18,62,218], which is significantly higher
than quartz crystals (i.e., 25 Ω–200 Ω).

Accordingly, the power handling ability of MEMS resonators is on the order of a few micro-Watts,
and they will exhibit significant non-linearity beyond that drive level which can deteriorate
performance or, if harnessed properly by the electronics, improve it [219–224]. In addition, the Q-factor
of MEMS mechanical resonators is in the 104 range, and is generally strongly inversely proportional to
the resonant frequency. This is lower than the Q-factors achieved by AT-cut crystals, which are
typically in the range of 104–105 over a wide range of frequencies. Furthermore, the resonant
frequency temperature dependence of an uncompensated MEMS silicon resonator is much higher
(−30 ppm/◦C [197]) than that of an AT-cut crystal (±25 ppm from −40 to 85 ◦C). Mechanical or
electronic temperature compensation is thus a must for MEMS resonators to match quartz temperature
stability, a critical parameter in all timing applications.

Regardless of their disadvantages, typical resonance frequencies of MEMS resonator can vary
from the kHz range to the GHz range [63,203,225], which is much higher than what is attained by
quartz crystals (~100 MHz), and they can be fabricated at relatively low cost and in some cases can be
integrated monolithically with the electronics [12], which are significant advantages.

Ultimately, a MEMS resonator exhibits a series and a parallel resonance, and a sustaining circuit
is required to compensate its motional resistance and provide the suitable phase condition to allow
for electronic oscillation. However, the higher motional resistance, non-linearity and in some cases
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high operating frequencies increase the design complexity of the sustaining electronics. In addition,
the mechanical noise of the resonator is an important factor to consider when designing an integrated
circuit and several works have attempted to model it [221,226–228]. This section focuses on the
particularities of MEMS resonator-based oscillators, and discusses the circuitry that is interfaced with
MEMS resonators in order to implement them.

8.2.1. Operating Principles

Oscillators are commonly used in RF systems in voltage controlled oscillators (VCOs) for high
frequency signal generation of carriers, or as low-frequency reference oscillators for PLLs. They can
also be used standalone in timing circuits, such as in electronic watches. Resonators are well suited to
creating such oscillators, because of their high-Q-factors and frequency filtering properties [6–8].

The topology in Figure 22a illustrates the configuration of a typical MEMS resonator-based
oscillator, with a resonator’s typical amplitude and phase frequency responses shown in
Figure 22b [162]. In a positive feedback loop, a sustaining amplifier with a frequency dependent
gain, A(s), an input-referred noise and a non-linear characteristic has its frequency response filtered by
a MEMS resonator having a frequency dependent motional resistance and thus frequency response,
β(s) [228]. At power up, the noise present in the positive feedback loop gets amplified and filtered by
the resonator after multiple passes around the loop until the sustaining amplifier or the mechanical
resonator limit the signal growth because of non-linearity. This reduces the loop gain A(s)β(s) such that
in steady-state, the gain around the loop (i.e., loop gain) has an effective value of unity, and a sustained
constant oscillation can be observed. Important aspects of the loop gain are that for this constructive
positive feedback to occur, and to allow for an oscillation be sustained, the linear gain around the
loop must be larger than unity, usually with some safety margin to allow for fast start-up and design
margins (e.g., 1.5 times the minimal gain required), and the phase shift around the loop must allow for
the noise waveform propagating around the loop to constructively grow. These oscillation conditions,
first defined by Heinrich Georg Barkhausen, can be expressed as:

|A(s)β(s)| > 1 (14)

∠(A(s)β(s)) = n360◦, n = 0, 1, 2 . . . (15)

Micromachines 2016, 7, 160 25 of 55 

 

on the particularities of MEMS resonator-based oscillators, and discusses the circuitry that is 
interfaced with MEMS resonators in order to implement them. 

8.2.1. Operating Principles 

Oscillators are commonly used in RF systems in voltage controlled oscillators (VCOs) for high 
frequency signal generation of carriers, or as low-frequency reference oscillators for PLLs. They can 
also be used standalone in timing circuits, such as in electronic watches. Resonators are well suited 
to creating such oscillators, because of their high-Q-factors and frequency filtering properties [6–8]. 

The topology in Figure 22a illustrates the configuration of a typical MEMS resonator-based 
oscillator, with a resonator’s typical amplitude and phase frequency responses shown in Figure 22b 
[162]. In a positive feedback loop, a sustaining amplifier with a frequency dependent gain, A(s), an 
input-referred noise and a non-linear characteristic has its frequency response filtered by a MEMS 
resonator having a frequency dependent motional resistance and thus frequency response, β(s) 
[228]. At power up, the noise present in the positive feedback loop gets amplified and filtered by the 
resonator after multiple passes around the loop until the sustaining amplifier or the mechanical 
resonator limit the signal growth because of non-linearity. This reduces the loop gain A(s)β(s) such 
that in steady-state, the gain around the loop (i.e., loop gain) has an effective value of unity, and a 
sustained constant oscillation can be observed. Important aspects of the loop gain are that for this 
constructive positive feedback to occur, and to allow for an oscillation be sustained, the linear gain 
around the loop must be larger than unity, usually with some safety margin to allow for fast start-up 
and design margins (e.g., 1.5 times the minimal gain required), and the phase shift around the loop 
must allow for the noise waveform propagating around the loop to constructively grow. These 
oscillation conditions, first defined by Heinrich Georg Barkhausen, can be expressed as: |(ݏ)ܣβ(ݏ)| > 1 (14) ∠൫(ݏ)ܣβ(ݏ)൯ = ݊360°, ݊ = 0,1,2… (15) 

A(s)

fs

Noise

MEM Resonator

Sustaining Amplifer

f

β (s)

fp

Non-
linearity

  
(a) (b)

Figure 22. (a) Typical MEMS resonator-based oscillator loop; and (b) typical resonator transmission 
characteristic amplitude and phase [162]. ©2010 IEEE. Reprinted with permission from 
Multifrequency Pierce Oscillators Based on Piezoelectric AlN Contour-Mode MEMS Technology by 
Zuo in J. Microelectromech. Syst., 2010. 

As can be seen in the phase condition above, the phase shift around the loop must either be zero 
or a multiple of 360°. Typically, oscillators will either operate around a 0° phase shift or a 360° phase 
shift. In the former, the resonator’s series-resonance, when the resonator’s impedance is lowest, is 
used with a sustaining amplifier having sufficient bandwidth to add negligible phase shift to the 
loop, while in the latter, its parallel-resonance, when the resonator’s impedance is largest, is used 
with an amplifier providing 180° phase-shift around the loop. In that case, the rest of the phase shift 
is provided by electrical passive components, usually capacitors, such that the phase shift at a 

Figure 22. (a) Typical MEMS resonator-based oscillator loop; and (b) typical resonator transmission
characteristic amplitude and phase [162]. © 2010 IEEE. Reprinted with permission from Multifrequency
Pierce Oscillators Based on Piezoelectric AlN Contour-Mode MEMS Technology by Zuo in
J. Microelectromech. Syst., 2010.
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As can be seen in the phase condition above, the phase shift around the loop must either be
zero or a multiple of 360◦. Typically, oscillators will either operate around a 0◦ phase shift or a 360◦

phase shift. In the former, the resonator’s series-resonance, when the resonator’s impedance is lowest,
is used with a sustaining amplifier having sufficient bandwidth to add negligible phase shift to the
loop, while in the latter, its parallel-resonance, when the resonator’s impedance is largest, is used with
an amplifier providing 180◦ phase-shift around the loop. In that case, the rest of the phase shift is
provided by electrical passive components, usually capacitors, such that the phase shift at a frequency
between the series and parallel resonances of the resonators is of 180◦, yielding the total required
360◦. Typically, series resonance provides more accurate oscillation frequency as it does not depend
on electrical components that may be inaccurate in order to attain additional phase shift, however,
designing an amplifier with negligible phase shift can be a challenge [216,229,230]. Provided that the
amplifier has enough gain to offset the loss of the resonator at resonance, and that its bandwidth is wide
enough to contribute negligible phase shift to the loop, the circuit will oscillate at the series-resonant
frequency of the resonator [230], otherwise, an offset in frequency will occur and the amplifier will
have to provide more gain to overcome the additional losses of the resonator at a frequency offset from
the series resonance. For parallel resonant circuits, a negative gain (i.e., a 180◦ phase shift) amplifier
can also be used with additional phase shift, such as in Pierce oscillators [163,215].

8.2.2. Phase Noise

Because of the bandpass nature of the resonator, and the noise-shaping of the electronic amplifier
noise caused by the feedback loop, the spectral density of the output is a single tone that has its
frequency purity compromised by a “skirt” around it [231]. This is shown in Figure 23a [232], where the
spectrum from a 27 MHz MEMS resonator oscillator is shown. The corresponding phase noise plot
shown in Figure 23b [232], where the noise power relative to the oscillation power is plotted against
offset frequencies form the oscillation frequency. In the time domain, phase noise can also be transposed
to the time domain as jitter in the phase of the output signal. In timing applications, jitter performance
is more often quoted (e.g., in ps) instead of phase noise performance (e.g., in dBc/Hz at a given
frequency offset), but both metrics and inherently related [233].
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where k is the Boltzmann constant, T is the operating temperature, F is the effective excess noise
factor, mainly caused by the sustaining amplifier, PS is the signal power at the input of the amplifier,
f0 is the oscillation frequency of the oscillator, ∆f is the offset frequency at which the phase noise is
measured, QL is the loaded quality factor of the resonator, and fC is the corner offset frequency at
which the phase noise starts to increase at a rate of 30 dB per decade. The conceptual power spectral
density of the phase noise shown in Figure 24 outlines that at far away offsets from the oscillation
frequency, phase noise becomes white in spectrum, but within the half-bandwidth of the resonator
(i.e., f 0/2QL), the phase noise increases by 20 dB per decade until it reaches a point where it increases
by 30 dB per decade below f C. Leeson’s model is somewhat empirical as F and f C are often obtained
by measurements, since phase noise is often significantly affected by nonlinearities and time variance
of the phase noise mechanisms in oscillators.Micromachines 2016, 7, 160 27 of 55 
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More elaborate phase noise models exists such as that in [234], where a time-variant phase noise
model is proposed. However, while not predictive in nature, the Leeson model can still provide
important insights with regards to phase noise performance. Notably, a higher resonator quality factor
and oscillation power will improve phase noise performance by tightening the oscillator’s output
spectrum, and reducing excess noise stemming from electronics will improve the phase noise floor.
It is also of interest to reduce the loading of the quality factor of the resonator by ensuring appropriate
input and output resistances of the sustaining amplifier [235]. The 1/f 3 corner frequency is often
attributed to 1/f noise present in the electronics, however it is often different in phase noise plots,
notably because of the time varying nature of the phase noise mechanism [234]. Degradation of phase
noise due to noise folding can also impact oscillator performance [236]. In addition, complexities can
arise because of nonlinearity [221] or the specificities of MEMS resonators can deteriorate phase noise.
For instance, mechanical noise can impact performance depending on the relative noise performance
of the sustaining amplifier [225]. Moreover, resonant non-linear behavior can also cause close-in
offset noise degradation and a higher than 30 dB phase noise slope [222,226,227]. This degradation of
phase-noise, notably at low frequency offsets has pushed most MEMS oscillator designs to employ
automatic gain control in the sustaining amplifier in order to reduce the non-linear behavior of the
MEMS resonator, and ensure optimal close-in offset performance [209,231,237,238]. The influence of
automatic gain control on the oscillator phase noise is shown with regards to time-domain frequency
stability in Figure 25a [208] and to phase noise performance in Figure 25b [237], outlining the
significant degradation in oscillator performance when no automatic gain control is used to limit the
oscillation amplitude. Notably, some resonator models have been proposed to enhance the typical
RLC model which does not allow for circuit design that takes into account resonator nonlinearity
(e.g., [223,228,239]), and other works have also leveraged the non-linearity of resonators to enhance
phase noise performance by designing the oscillator to take advantage of the Duffing behavior of the
resonator (e.g., [139,221]).
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Figure 25. (a) The effect of automatic gain control due to the nonlinearity of the resonator on time
domain frequency stability of a MEMS oscillator [208]. © 2009 IEEE. Reprinted with permission
from A Highly Integrated 1.8 GHz Frequency Synthesizer Based on a MEMS Resonator by Nabki
in J. Solid-State Circuits, 2009; and (b) the effect of automatic gain (level) control on the phase noise
performance of a MEMS oscillator [237]. © 2003 IEEE. Reprinted with permission from Influence of
automatic level control on micromechanical resonator oscillator phase noise. by Lee in Proceedings of
the IEEE International Frequency Control Symposium, 2003.

Ultimately, the limited power handling capabilities of MEMS resonators compared to quartz
crystals restricts phase-noise performance improvement through the increase of the oscillation
amplitude, but the high-Q they provide allows competitive phase noise performance if proper gain
control measures are taken to mitigate resonator nonlinearity. This is particularly true of electrostatic
resonators which are inherently more non-linear due to their actuation mechanism [83]. However,
piezoelectric resonators are also prone to non-linear behavior [220]. Overall, the output phase noise of
a MEMS resonator-based oscillator thus depends on several factors:

• The higher the Q-factor of the resonator, the lower the phase noise in the MEMS oscillator because
of the enhanced noise filtering.

• The higher the power handling capability of the resonator, the lower the phase noise of the MEMS
oscillator because of the increased sustainable amplitude of oscillation.

• The higher the motional resistance, the higher the phase noise of the MEMS oscillator because
of the higher gain sustaining amplifier is required, usually required more active devices that
generate noise.

• The lower the electronic noise of the sustaining amplifier, the better the phase noise because of
the shaping of this noise that causes a significant portion of the overall phase noise.

8.2.3. Temperature Compensation

A significant issue for MEMS oscillators is their stability with changes in the ambient temperature.
As was previously mentioned, the resonant frequency temperature dependence of an uncompensated
MEMS silicon resonator is much higher than that of an AT-cut crystal (i.e., ~50 times worse).
Many strategies can be adopted to reduce this sensitivity. Electrostatic tuning can be used to change the
bias of the resonator in response to temperature changes [240–242]. Thermal stress compensation can
also be used by creating composite resonating structures that feature materials such as silicon oxide
that can compensate silicon’s temperature variability [242]. Direct thermal tuning can also be used
to control the resonator’s frequency and improve its frequency stability, similarly to oven controlled
crystals [243–245]. Other approaches involve the use of phase-locked loops in arrangements that can
include mismatched temperature coefficient resonators that result in a temperature stable operating
point (e.g., [207,208]) or that can include temperature to digital converters that control the output
frequency of the loop to compensate the resonator temperature variance (e.g., [203,206,207,246,247]).
More recently, the use of electronics for compensation has precluded MEMS oscillators from operating
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at power budgets that rival that of quartz oscillators. However, mechanically temperature compensated
resonators using doped silicon or silicon oxide [243,248,249] are a current interest for commercial
applications as they can preclude the need for heating or electronic compensation, allowing for
lower power consumption and better phase noise performance due to the reduced complexity of the
control electronics.

8.2.4. Sustaining Amplifiers

As was previously discussed, MEMS resonators exhibit very high motional resistances
compared to that of quartz crystals—typically in the order of several tens of kilo-Ohms for
electrostatically actuated resonators, and a few kilo-Ohms for piezoelectrically actuated resonators.
Accordingly, in order to operate at the series-resonance of the resonator, the motional current outputted
by the resonator device needs to be amplified by a trans-impedance amplifier (TIA) having the
following characteristics [215]:

• a high gain to offset the resonator losses (i.e., at least 1.5 times the resonator’s motional resistance);
• a bandwidth which is an order of magnitude larger than the resonator’s frequency to ensure

a small phase shift around the feedback loop;
• low input and output impedances to avoid loading the resonator’s Q-factor;
• an automatic gain control capability to prevent large oscillations from exerting the

resonator’s nonlinearities.

All these specifications are challenging to fulfill simultaneously, and require carefully designed
circuitry. The typical interconnection for a trans-impedance amplifier with automatic gain control used
to bring a clamped-clamped beam resonator is shown in Figure 26 [241].
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Figure 26. The typical trans-impedance amplifier configuration providing 0◦ phase shift and sufficient
gain around an electrostatic resonator [241]. © 2007 IEEE. Reprinted with permission from Electronically
Temperature Compensated Silicon Bulk Acoustic Resonator Reference Oscillators by Sundaresan in
J. Solid-State Circuits, 2007.

In this configuration, an operational amplifier is put in shunt-shunt resistive feedback to provide
a trans-impedance gain of −RAMP and a second stage provides an additional gain of −1 to provide
a total positive gain with 0◦ phase shift and sufficient gain to offset the motional resistance of the
resonator. Note that the resonator in this work has two transducer gaps, which reduces the feedthrough
capacitance and thus mitigates the parallel resonance of the resonator. A level control circuit can
modulate the gain by changing the feedback resistance, which is implemented with a triode transistor.
Note that the use of a triode transistor can cause non-linear behavior of the circuit and detract from
phase noise performance [249]. In addition, the input resistance of the shunt-shunt feedback amplifier
is typically on the order of RF/A, where A is the gain of the operational amplifier in the shunt-shunt
feedback. This implies that if very large gain is implemented with the amplifier or if it has insufficient
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gain, the input impedance may increase sufficiently to significantly load the quality factor of the
resonator and deteriorate phase noise performance, as later discussed. As for resonator nonlinearity
mitigation, many different amplitude limiting schemes exist, ranging from hard limiting using
comparators or saturating circuits to soft limiting using variable gain amplifiers [216,231,238,250–252].

In Figure 27, a topology using a trans-impedance input stage with a second voltage gain stage to
provide sufficient gain is shown [215]. The advantage of splitting the gain stages into two is that more
gain bandwidth can be achieved per stage to allow for series-resonant oscillation at up to 15 MHz
in [208]. The shunt-shunt feedback is implemented in the variable gain amplifier. Again, an automatic
gain control can regulate the gain to prevent resonator nonlinear limiting and enhance phase noise.
This is implemented by varying the voltage stage gain in response to the amplitude detected at the
output of the oscillator through the automatic gain control loop.Micromachines 2016, 7, 160 30 of 55 
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sizing. This is in contrast to the shunt-shunt amplifier which imposes relationship between the 

Figure 27. Typical trans-impedance amplifier (TIA) block diagram, showing a resonator connected
in closed-loop.

At the transistor level, the trans-impedance structure has been used both for electrostatic
resonators (e.g., [201,217,231,242,245,253]) or piezoelectric resonators (e.g., [239]). Many designs
utilize a regulated cascode input stage to boost the current gain and reduce the input resistance of the
trans-impedance at the input, in order to reduce the Q-loading on the resonator. This is important as
Q-loading in series-resonant oscillators is given by:

QL =
QUL

1 + (Ri + Ro)/Rm
(17)

where QUL is the unloaded Q-factor of the resonator, Rm its motional resistance, Ri the input resistance
of the sustaining amplifier and Ro its output resistance. Moreover, in order to reduce the Q-loading
of the resonator, all series-resonant circuits include an output stage which ensures a low output
resistance, as shown in Figure 27. This can be a common-source type buffer, or a series-shunt feedback
buffer circuit.

The regulated cascode circuit is shown in Figure 28 [215] and variants of it are used in works
such as [138,216,245,254]. Assuming R3 is large enough so that the signal current through it can be
neglected, the low-frequency input impedance of this stage can be shown to be

Ri =
1

gm1(1 + gm2(R2||ro2))
(18)
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It can be seen that the gain of the feedback loop increases the trans-conductance of transistor M1,
and therefore lowers the input impedance of the amplifier beyond that of a traditional common-gate
configuration biased at the same current. The trans-impedance gain of the stage is approximately
R1, which can be selected independently to gm1 and gm2 with appropriate transistor sizing. This is
in contrast to the shunt-shunt amplifier which imposes relationship between the achievable gain
and the input resistance, as was previously discussed. To achieve a large gain, the size of R1 must
be maximized, but the voltage drop across it must be small enough to keep M1 in saturation mode.
This reveals the main advantage of the gm-boosted topology, compared to a simple common-gate
amplifier. A small bias current can flow through M1 and R1, allowing for a large trans-impedance gain,
while the feedback provided by M2 and R2 boosts the trans-conductance of M1 such that the input
impedance remains small. Note that the resistors can be implemented as triode transistors as well,
but care should be given to the 1/f noise performance in that case.

Typically following the regulated cascode is a variable voltage gain amplifier in shunt-shunt
feedback using a triode transistor to vary the gain such as in [253], and shown in Figure 29 [253]
following a regulated cascode input stage using two triode transistors M3 and M4. The voltage gain
amplifier this case is composed of two inverters (M5, M6 and M7, M8), with the second inverter in
shunt-shunt feedback allowing for controllable gain through the biasing of transistor Mf. Capacitor Cpk
is included in this case in order to provide a peaking zero in the frequency response which extends
the bandwidth of the amplifier and ensures a sufficient bandwidth to meet the 0◦ phase condition
for series-resonant oscillation. Note that the first inverter in the voltage amplifier can be difficult to
bias properly because of the sensitive nature of the inverter input node to DC bias. As such in [138],
a less sensitive common source voltage gain stage is used before the shunt-shunt feedback tunable
voltage stage.
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Another amplifier structure which has been used is the capacitive feedback trans-impedance
amplifier structure [218,255,256]. This structure is shown in Figure 30 [254] and includes an operational
amplifier which is configured with capacitive feedback, allowing for a very large gain and very low
noise since the capacitor element does not contribute any noise to the circuit, unlike the feedback
resistor used in shunt-shunt configurations. This topology requires careful design of the frequency
response of the circuit to ensure proper phase shift for oscillation.
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In addition, the Pierce oscillator structure shown in Figure 31 [214], often used in quartz oscillators,
has also been used in MEMS resonator-based oscillators. In this architecture, one transistor is used to
provide negative gain, and load capacitance ensures minimal Q-loading of the resonator and optimal
phase shift. This configuration utilizes parallel resonance of the resonator to attain the additional
phase shift required to attain oscillation. The Pierce structure, due to its reduced achievable gain
is mostly used in piezoelectric MEMS resonator-based oscillators (e.g., [163,215,257,258]). However,
this topology is less used in electrostatic resonators, as they generally have too large of a motional
resistance to be overcome by the one transistor stage Pierce structure. Notably, some works involving
electrostatic resonators have been able to achieve Pierce-type oscillators by using relatively small
electrostatic gap resonators in order to reduce the motional resistance sufficiently (i.e., 50 nm in [249]).
In that regard, works have shown methods of reducing the electrostatic gap-size after fabrication
using static electrostatic actuation of the resonant structure towards the drive and sense electrodes,
potentially allowing for more widespread use of the Pierce structure [259,260]. MEMS oscillators can
also operate using parallel resonance though a higher gain inverting amplifier (e.g., current starved
inverter in [201]) and capacitive elements to provide additional phase shift.
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common-mode noise, and take advantage of resonators having differential resonant modes which can
result in better phase noise performance (e.g., [256,260]).

8.2.5. Nonlinear Oscillators

Some efforts have been carried out to operate MEMS resonators in their non-linear Duffing regime
in order to achieve more than 1/f 2 phase noise filtering, and significantly improve the close-in phase
noise performance of MEMS oscillators [220]. Work in [220] and all of the previously discussed series
and parallel resonant oscillators are harmonic in nature, such that a resonator, acting as a bandpass filter
is put within a positive feedback loop to generate an oscillation at a frequency within the resonator’s
series or parallel resonance frequencies.

Recently, nonlinear oscillators, such as the parametric oscillator, originally introduced in RF and
microwave applications (see [259]), have been applied to MEMS resonators [224,260–263]. The simplest
parametric oscillators operate on the modulation of a characteristic in a pumping loop at twice the
required resonator resonant frequency [260]. When doing so, the resonator will generate a signal
through its non-linearity that will provide the required output frequency. The fact that no electronics
operating at the resonant frequency are required to close a harmonic loop around the resonator
allows for these oscillators to feature low close-in phase noise performance (i.e., within the resonator
bandwidth) since the electronic noise is not dominating at the resonant frequency [224,263,264].

Electrostatic resonators are particularly well-suited for harmonic oscillators, as their spring
constants can be modulated using a variation of their bias voltages, such as shown in Figure 32a [223]
and 32b [261]. This can be done by a specially designed oscillator operating at double the resonator
resonator’s frequency [223], or by putting the resonator within a loop that includes a frequency-doubler
and start-up source [261]. Parametric oscillation can also be carried-out with piezoelectric resonators,
but the higher linearity of the piezoelectric transducer has required the use of a voltage varying
capacitor (i.e., a varactor), in the parametric amplifier to generate the harmonic behavior [262].

Micromachines 2016, 7, 160 33 of 55 

 

Electrostatic resonators are particularly well-suited for harmonic oscillators, as their spring 
constants can be modulated using a variation of their bias voltages, such as shown in Figure 32a 
[223] and Figure 32b [261]. This can be done by a specially designed oscillator operating at double 
the resonator resonator’s frequency [223], or by putting the resonator within a loop that includes a 
frequency-doubler and start-up source [261]. Parametric oscillation can also be carried-out with 
piezoelectric resonators, but the higher linearity of the piezoelectric transducer has required the use 
of a voltage varying capacitor (i.e., a varactor), in the parametric amplifier to generate the harmonic 
behavior [262]. 

(a) (b) 

Figure 32. (a) Parametric pumping of a MEMS electrostatic resonator [223]; © 2014 IEEE. Reprinted 
with permission from A micromechanical parametric oscillator for frequency division and phase 
noise reduction by Rocheleau in the Proceedings of International Conference on Micro Electro 
Mechanical Syst., 2014; and (b) a typical parametric oscillator loop used with a nanoscale resonant 
beam [261]. Reproduced with permission from Villanueva et al., Nano Lett.; published by American 
Chemical Society, 2011. 

This approach notably has for advantage of allowing lower-Q-factor resonators to be used and 
deliver performance akin to higher-Q devices, allowing for the design using moderate Q-factor 
resonator which may have power handling advantages that can reduce far offset phase noise 
performance further, while providing adequate close-in phase noise performance through a 
parametric oscillator configuration. 

8.3. Sensing 

Operation of resonant sensors is based on transforming energy in from one domain to a change 
in the resonant frequency of a device. The change in resonant frequency can be detected by sweeping 
the frequency of an excitation signal around the resonant frequency of the device. A more practical 
method is to place a two-port resonant device within the feedback loop of a properly designed 
electronic circuit to form an oscillator. In this case, measurements of the quantity of interest will be 
carried through monitoring of the output frequency of the oscillator circuit. Resonant sensors are 
among the most sensitive and precise devices for many applications. This in great part is due to the 
variety of existing techniques for fast, precise, and accurate measurement of the frequency or period 
of a signal. It is relatively simple to measure the frequency of a signal with sub-ppm levels of 
precision while achieving a similar level of precision on a voltage or current measurement is 
typically a challenge. Accurate frequency references, from crystal oscillators to atomic clocks, offer 
better stability than typical voltage or current references. On the other hand, the signal from a 
resonant sensor is quasi˗digital since an analog˗to˗digital converter is not needed to measure a 
frequency. As the information is embedded in frequency rather than amplitude, the sensor signal is 
immune to noise and interference. 

Recalling that ω = ඥୣܭ ⁄ୣܯ 	, it can be seen that a shift in the resonant frequency of a 
structure is a consequence of a change in the effective mass or the effective spring constant of the 
structure: Δ ݂ = ݂2 ൬Δୣܭୣܭ − Δୣܯୣܯ ൰ (19) 

Figure 32. (a) Parametric pumping of a MEMS electrostatic resonator [223]; © 2014 IEEE. Reprinted with
permission from A micromechanical parametric oscillator for frequency division and phase noise
reduction by Rocheleau in the Proceedings of International Conference on Micro Electro Mechanical
Syst., 2014; and (b) a typical parametric oscillator loop used with a nanoscale resonant beam [261].
Reproduced with permission from Villanueva et al., Nano Lett.; published by American Chemical
Society, 2011.

This approach notably has for advantage of allowing lower-Q-factor resonators to be used and
deliver performance akin to higher-Q devices, allowing for the design using moderate Q-factor
resonator which may have power handling advantages that can reduce far offset phase noise
performance further, while providing adequate close-in phase noise performance through a parametric
oscillator configuration.
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8.3. Sensing

Operation of resonant sensors is based on transforming energy in from one domain to a change in
the resonant frequency of a device. The change in resonant frequency can be detected by sweeping
the frequency of an excitation signal around the resonant frequency of the device. A more practical
method is to place a two-port resonant device within the feedback loop of a properly designed
electronic circuit to form an oscillator. In this case, measurements of the quantity of interest will be
carried through monitoring of the output frequency of the oscillator circuit. Resonant sensors are
among the most sensitive and precise devices for many applications. This in great part is due to
the variety of existing techniques for fast, precise, and accurate measurement of the frequency or
period of a signal. It is relatively simple to measure the frequency of a signal with sub-ppm levels of
precision while achieving a similar level of precision on a voltage or current measurement is typically
a challenge. Accurate frequency references, from crystal oscillators to atomic clocks, offer better
stability than typical voltage or current references. On the other hand, the signal from a resonant
sensor is quasi-digital since an analog-to-digital converter is not needed to measure a frequency. As the
information is embedded in frequency rather than amplitude, the sensor signal is immune to noise
and interference.

Recalling thatω0 =
√

Ke f f /Me f f , it can be seen that a shift in the resonant frequency of a structure
is a consequence of a change in the effective mass or the effective spring constant of the structure:

∆ f0 =
f0

2

(
∆Ke f f

Ke f f
−

∆Me f f

Me f f

)
(19)

where ∆Ke f f and ∆Me f f are disturbances in the effective stiffness and mass of the structure, respectively.
The challenge, therefore, is the proper design of mechanical coupling structures to transform the
information from the desired physical domain to a change in dynamic properties of a micromechanical
device. Consequently, the design of resonant sensors involves the design of a (high-Q) resonator as
well as coupling mechanisms that convert the quantity of interest into a mass or stiffness disturbance.
The changes in stiffness are usually a consequence of developing internal stresses within the structure
of the device. Obvious applications of resonant sensors are thus mass or strain sensing.

Changes in resonant frequency can be measured in different ways. The most straightforward
method, especially in a laboratory setting, is to sweep the frequency of the excitation signal around
resonant frequency and monitor the changes in resonant frequency in response to disturbances.
Another technique is to excite the resonator with a fixed stable signal at a frequency that is slightly
different (typically higher) than the resonant frequency of the device. In this case, changes in the
resonant frequency will be converted to changes in the amplitude of the output signal and can be
related back to the measurand. A technique more suitable for general applications is to place the
resonator in the feedback loop of an oscillator circuit and monitor its output frequency. In all these
cases, higher quality factors result in better resolutions for the sensor. Therefore, maximizing the
resonant sensor quality factor is another design and operation requirement. It should be noted that too
high a Q can lead to large resonance amplitudes, and hence, make the resonator prone to nonlinearities.

It is noteworthy that, as can be seen from Equation (5), changes in quality factor can also affect the
resonant frequency of a device. However, quality factor of microdevices is often quite large and varies
significantly from device to device. As such, both precision and accuracy advantages may be sacrificed
to a great extent. If the parameter of interest affects the quality factor, changes in signal amplitude are
typically easier to measure than changes in the resonant frequency. Additionally, a high quality factor
often reduces the sensitivity of the resonator response to changes in quality factor.

8.3.1. Resonant Sensors Based Changes in Effective Mass

Resonant mass sensing, also known as gravimetric sensing, has been a well-known application of
resonators. The change in the effective mass of the structure can be due to settlement of particles and



Micromachines 2016, 7, 160 35 of 56

objects on the resonators surface, deposition of thin films, or absorption of material into films on the
surface of the device. Resonant mass sensors have therefore been used to detect particle concentration,
deposition rate, chemical sensing, and bio-sensing. As can be inferred from Equation (9), to obtain
a high mass sensitivity, one would like to use a device with a high resonant frequency f0, with a small
effective mass, Me f f . Reducing device dimensions usually achieves both of these goals at the expense
of complexity of input/output coupling to the device.

Beam based structures, such as cantilevers and bridges, offer a simple structure, straightforward
excitation, and various detection possibilities [48,265–271]. Figure 33 is an SEM image of a bridge-based
mass sensor where sheets of platinum were deposited for controlled characterization of the device.
Even single carbon nanotubes can be used as super-sensitive cantilever-based mass sensors [272,273].
To use these devices, the beam resonator is excited in its flexural, typically out-of-plane, mode of
vibration using piezoelectric or electrostatic actuation. The resonant frequency of the beam is then
monitored using optical or electrical techniques as to quantify the mass added to the structure.
For flexural vibrations of a beam, the contributions of different segments of the structure to its effective
mass vary depending on the beam geometry and the relative amplitude of vibration (see Equation (19)).
The location of added mass onto the beam is thus another factor that affects the amount of shift in the
resonant frequency and must be taken into account in such studies [274,275].Micromachines 2016, 7, 160 35 of 55 
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Figure 33. A resonant mass sensor based on coupled resonators. Note the addition of platinum sheets
used for characterization of the sensor [269]. © 2016 IEEE. Reprinted with permission from Improving
sensitivity of resonant sensor systems through strong mechanical coupling by M.S. Hajhashemi in
J. Microelectromech. Syst., 2016.

To go beyond the capabilities of a simple cantilever structure without dealing with complexities
of driving and sensing signals at the nano-scales, one can take advantage of bulk resonant modes of
structures. Bulk mode resonators, in general, offer higher resonant frequencies for similar dimensions
as flexural devices. Furthermore, they often have higher quality factors, which improves the resolution
of the sensors [274]. The structure of a bulk mode resonators is typically simple to reduce the effects
of spurious modes and is usually based on a beam, square or circular plate, or a ring. Any of surface
acoustic wave [276–278], thickness shear [279,280], bulk acoustic wave [281,282], or extensional
modes [283,284] can be selected for mass sensing among several other modes of vibration [283].
The selection of the mode shape is usually influenced by fabrication capabilities and the desired
transduction mechanisms.

One of the main applications of gravimetric sensors is chemical sensing, particularly in gaseous
phase [284]. In such applications, a thin film that selectively binds to the target chemical is applied to
the surface of the resonator. During the device operation, the analyte is adsorbed onto or absorbed into
this sensitive layer, causing an increase in the effective mass of the structure, among other potential
effects. For instance, molecules absorbed into the film often produce a stress at the surface of the
structure, which besides affecting the resonant frequency of the resonator, modifies the surface losses
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in the structure and alter the quality factor of the resonator. The resonator, on the other hand, is usually
placed in an oscillator loop and the changes in its resonant frequency are monitored. For a perfectly
selective film, the changes in the effective mass can be directly related to the concentration of the
particular chemical in the environment. In practice, however, various other phenomena may affect the
resonant frequency of the device including variations in temperature, humidity, and other molecules
that may also bind to the film. Cantilevers and bridges are among the more common types of
resonators that are used for gravimetric gas sensing in gases [285–289]. The simple structure of these
resonators makes it possible to fabricate high performance devices even when the manufacturing
process is not optimal [290–292]. The large surface area of quartz microbalances or surface acoustic
wave resonators makes them popular choices for gas sensing applications as the focus is placed on the
thin film [293–296]. Gravimetric sensors based on nano-resonators are capable of detecting a single
molecules of target analyte. Arrays of gravimetric gas sensors have been used in multi-gas sensors
systems, also known as electronic-noses [297–299].

Resonant mass sensors are also used for the detection of biomolecules. In this case, the active
surface of the resonator is coated with a protein that selectively binds to the target biomolecule.
However, as most biological sensing needs to be carried within biofluids, most resonant modes are
damped so heavily that they could no longer be used as gravimetric sensors. The resonant modes that
can still result in high quality factors often rely on in-plane movements of the resonator relative to the
liquid surface [148,274,279,300–302]. It is also possible to build micro- or nano-channels within the
structure of the resonator (see Figure 34) [45]. Once the inside walls of these channels are activated,
the biosample is flown through the channels. Target biomolecules in the sample bind to the channel
walls, increasing the effective mass of the resonator. This technique allows for the use of various
resonators at the expense of increased fabrication complexity.
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8.3.2. Resonant Sensors Based Changes in Effective Stiffness

The stiffness of most mechanical structures is a function of the stress applied to them. A familiar
example is a guitar string whose natural frequency increases with tensile stress. Most resonant sensors
employ the flexural resonant modes of a structure. This in part is due to the fact that it is fairly simple
to couple an input stress onto a flexural spring without affecting other resonator parameters especially
its quality factor. For a clamped-guided beam, a common element in MEMS structures. The effective
flexural spring constant of such a beam under axial force T (positive for tensile forces) is given by [302]:

kb =
γT

γL− 2tanh
(
γL
2

) ≈ 12EI
L3 +

6T
5L

(20)

where E is the Young’s modulus of the material, L and I are the length and the second moment of inertia
of the beam spring, respectively, and γ =

√
T/EI. As can be seen, the flexural spring constant changes
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linearly for small axial forces (stiffens for tensile stress and softens for compressive). The extreme
sensitivity of resonant sensors allows for the detection of strains on the order of pico- to nano-strains,
and hence, a viable mechanism for detection of various phenomena. To maintain high quality factor,
most resonant sensors are operated under vacuum. This encapsulation creates challenges for the
coupling of the measurand to the resonator structure.

Much like mass sensing, strain sensing is an obvious application of resonant sensors.
A strain sensor, in its simplest form, is anchored at two locations which undergo some relative
displacement during the device operation. The anchors transfer this strain to the resonator structure,
and consequently, affect its resonant frequency [303–306].

Pressure sensors were among the early examples of resonant sensors. The design of these devices
is based on anchoring a resonator to one side of a membrane that would deflect under pressure.
The membrane deflections would then cause an axial strain onto the resonator, ultimately causing
a change in its resonant frequency (see Figure 35). The required high quality factor was achieved
through providing a stable, low-pressure ambient on the resonator side of the membrane [307–311].
Figure 36 shows such a device where coupled bridge resonators were enclosed in a micro-cavity and
anchored to the top of a flexible membrane [312,313]. The device was placed within a fixed magnetic
field produced by a permanent magnet. A current is used to produce a Lorentz force on one arm of
the device whose dynamic deflections are picked up using the electromotive voltage produced across
a coupled beam. The device was then placed within the feedback loop of an oscillator circuit.
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Figure 36. The resonant pressure sensor by Ikeda et al. [311]: (a) the schematic of the resonator
and circuitry around it and (b) cross-sectional view of one of the beams inside the cavity and the
encapsulation film. © 1998 IEEE. Reprinted with permission from Silicon Micromachined Vacuum
Encapsulated Resonant Pressure Sensors by K. Ikeda in Proceedings of International Microprocesses
and Nanotechnology Conference, 1998.

Several resonant magnetic field sensor designs have also been proposed [304,314–316]. In a typical
design, the Lorentz force on a current-carrying beam is used to generate a stress on a resonator,
whose resonance frequency then changes accordingly. Figure 37 illustrates a sample design where the
Lorentz force on two cross-bars was transferred axially to an electrostatic resonator [315]. Thanks to the
inherent advantages of resonant sensing, resonant magnetic sensors typically offer a high resolution
and dynamic range without the need for any special fabrication steps or materials. Some magnetic
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sensors designs employ resonance to enhance the sensor response, but their output is based on a change
in signal amplitude rather than frequency [317–319].
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Figure 37. A resonant micromachined magnetic field sensor [315]. A DC current is passed through the
two metal coated cross-bars which generates a Lorentz force that results in an axial force on the beam
springs of the electrostatic resonator.

Linear inertial forces on structures can also be coupled to a resonator structure to realize resonant
accelerometers [320–322]. Figure 38 is an SEM image of a resonant accelerometer where displacements
of proof mass were measured through changes in the resonant frequency of the connector beam [321].
It is also possible to measure the proof mass displacements through monitoring the change in the
electrostatic spring constant in electrostatic resonators [322]. Even though resonant accelerometers are
capable of achieving very high resolutions, their relatively slow response times makes their applications
limited to special cases. Vibratory gyroscope designs are also based on microresonator structures.
However, in typical designs, two resonators or two vibration modes of a single resonator are employed
and the measurement of rate is based on change in signal amplitudes [323–327].
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Figure 38. A resonant accelerometer: (a) The structure was brought under resonance using a thermal
actuator embedded at the base of connector beam (b). Strains were measured using doped
piezoresistors [321]. Reproduced with permission from Aikele, M. Sens. Actuators Phys.; published by
Elsevier, 2001.

Structures can be designed to convert a Columbic force to an axial stress. The Columbic force can
be generated from a field produced by an electric charge. This concept has been employed design and
fabricate micromachined resonant charge sensors [328,329].
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8.4. Radio-Frequency Systems

MEMS resonators have the potential to be used in RF systems as filters in various locations of the
transceiver chain or as oscillator core elements to directly generate RF carriers or generate reference
frequencies for LC RF oscillators in RF frequency synthesizers [7,86,330,331].

This is illustrated in Figure 39a, where MEMS resonators could replace the band-select,
image-reject, or channel-select filters. They could also be used in the channel-select phase-locked
loop as frequency references. The very high quality factor and GHz-range resonant frequencies
attainable by MEMS resonators can also allow for receiver architectures that are not possible with
other filter technologies. This is illustrated in Figure 39b, where electrostatic MEMS resonators
resonating at RF frequencies can be used to filter the channel directly before the low-noise amplifier
(LNA) [7,11,332–334]. Moreover, the MEMS resonators can be used as mixer-filters by leveraging
their non-linearity to provide tuned carrier down-conversion [333], and the RF local oscillator can
be implemented without a phase-locked loop [210]. Besides the inherent area and cost savings,
the architecture in Figure 39b can be used to trade off high-Q for power consumption [330] as channel
selection directly carried-out at RF yields a substantial advantage: the dynamic range and linearity
requirements of the LNA and mixer in the receive path can be reduced. This is because high power
interferers can be rejected not only at the band-level but also at the channel-level, only leaving the
channel of interest to be amplified. Moreover, an RF-level channel-filter can relax the phase noise
requirements of the RF oscillator relative to adjacent channel interferers, as these channels are already
attenuated before the down-conversion.Micromachines 2016, 7, 160 39 of 55 
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With regards to filtering, MEMS resonators can be electrically viewed as bandpass filters with
very small bandwidths, having center frequencies determined by their intended resonant mode.
MEMS resonators can also be combined in order to create higher order bandpass filters which can
potentially be integrated into transceiver front-ends by replacing costly, off-chip, narrow-bandwidth
filters. In order to achieve a bandpass filtering function with sufficient bandwidth, MEMS resonators
need to be coupled together as their quality factors are generally too high to provide a wide enough
bandwidth standalone. This coupling between resonators to achieve the required flat enough passband
can be done mechanically (e.g., [86,210,335–338]) using springs, typically implemented through
torsional, flexural or extensional beams, or electrically using intrinsic capacitances (e.g., [64,88,141,339]).
Band stop filters have also been proposed [338] and wideband filters have also been demonstrated [175].

An obstacle to the deployment of MEMS resonators as filters in RF systems is their insertion
losses that can be on the order of several dBs [11], causing too much noise figure degradation if used
before the low-noise amplifier. Moreover, the motional resistance of electrostatic MEMS resonators is
usually on the order of several kilo ohms, which requires matching networks to be implemented in
order to ensure correct filter terminations in 50 Ω RF systems [11]. This can be circumvented by using
piezoelectric MEMS resonators (e.g., [64,141,142,340,341]) that can have lower motional resistances
on the order of 50 Ω. Moreover, resonator arraying can mitigate the large motional resistance in the
case of electrostatic resonators [79]. Other works include a post filter trans-impedance amplifier to
increase the signal strength after the filter, at the cost of increased power consumption and no noise
figure benefit [337,338].

Regardless of these challenges, piezoelectric bulk acoustic wave (BAW) MEMS resonators have
successfully been demonstrated in receivers [15,211] to perform PLL-free frequency synthesis and
channel selection at RF.

9. Conclusions

In this review paper, we have endeavored to illustrate the diversity of progress made in the field of
micromachined resonators and the divergence in approaches and applications that have been pursued
over the last three decades. We began with a description of the basic model and properties of a generic
micromachined resonator as the unifying and starting spring board from which the various key aspects
of interest pertaining to resonator design and implementation were subsequently described. We have
seen that there exists not only a great diversity in the vibration modes reported in the literature but
also a plethora of approaches in the fabrication technology as well as materials. While the field of
started off with single-crystal silicon and polysilicon processing dominating the literature, this review
has shown the great diversity of process technologies that illustrate the divergence of the field today
represented by piezoelectric thin films (e.g., AlN, PZT, ZnO) and bulk materials (e.g., LiNbO3) as
well as micromachining in standard CMOS fabrication technology. We have also presented the
variety of transduction mechanisms that have been actively employed during the progress of this
field in addition to capacitive transduction that was the most common method in the early days
of development. This variety of transduction mechanisms includes recent findings suggesting that
thermal actuation has a place for actuation in high frequency resonators. While analytical modeling
of damping mechanisms remains highly complex and out of reach, numerical methods for capturing
specific energy loss mechanisms such as anchor loss have become highly popular among designers.
Advancement in the field of microresonators has gone beyond the resonator itself to include interface
electronics such as in the case of implementing oscillators. We have described key circuit topologies
that have been employed to realize MEMS oscillators, as well as developments in addressing the issue
of temperature compensation. With respect to applications, we have shown how resonators constitute
key elements in radiofrequency frequency control, sensing (mass and force) and timing references.
We envisage that the range of applications for resonators will expand further with increasing
advancement in their fabrication, design and analysis.
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